ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con1bdc Unicode version

Theorem con1bdc 868
Description: Contraposition. Bidirectional version of con1dc 846. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
con1bdc  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( -.  ph  ->  ps )  <->  ( -.  ps  ->  ph ) ) ) )

Proof of Theorem con1bdc
StepHypRef Expression
1 con1dc 846 . . . 4  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  ->  ( -.  ps  ->  ph ) ) )
21adantr 274 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( -. 
ph  ->  ps )  -> 
( -.  ps  ->  ph ) ) )
3 con1dc 846 . . . 4  |-  (DECID  ps  ->  ( ( -.  ps  ->  ph )  ->  ( -.  ph 
->  ps ) ) )
43adantl 275 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( -. 
ps  ->  ph )  ->  ( -.  ph  ->  ps )
) )
52, 4impbid 128 . 2  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( -. 
ph  ->  ps )  <->  ( -.  ps  ->  ph ) ) )
65ex 114 1  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( -.  ph  ->  ps )  <->  ( -.  ps  ->  ph ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator