ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con1dc Unicode version

Theorem con1dc 861
Description: Contraposition for a decidable proposition. Based on theorem *2.15 of [WhiteheadRussell] p. 102. (Contributed by Jim Kingdon, 29-Mar-2018.)
Assertion
Ref Expression
con1dc  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  ->  ( -.  ps  ->  ph ) ) )

Proof of Theorem con1dc
StepHypRef Expression
1 notnot 632 . . 3  |-  ( ps 
->  -.  -.  ps )
21imim2i 12 . 2  |-  ( ( -.  ph  ->  ps )  ->  ( -.  ph  ->  -. 
-.  ps ) )
3 condc 858 . 2  |-  (DECID  ph  ->  ( ( -.  ph  ->  -. 
-.  ps )  ->  ( -.  ps  ->  ph ) ) )
42, 3syl5 32 1  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  ->  ( -.  ps  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840
This theorem is referenced by:  impidc  863  simplimdc  865  con1biimdc  878  con1bdc  883  pm3.13dc  965  necon1aidc  2451  necon1bidc  2452  necon1addc  2476  necon1bddc  2477  exmidapne  7442  bitsinv1lem  12467  phiprmpw  12739  fldivp1  12866  prmpwdvds  12873
  Copyright terms: Public domain W3C validator