Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con1dc | Unicode version |
Description: Contraposition for a decidable proposition. Based on theorem *2.15 of [WhiteheadRussell] p. 102. (Contributed by Jim Kingdon, 29-Mar-2018.) |
Ref | Expression |
---|---|
con1dc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 619 | . . 3 | |
2 | 1 | imim2i 12 | . 2 |
3 | condc 843 | . 2 DECID | |
4 | 2, 3 | syl5 32 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: impidc 848 simplimdc 850 con1biimdc 863 con1bdc 868 pm3.13dc 949 necon1aidc 2387 necon1bidc 2388 necon1addc 2412 necon1bddc 2413 phiprmpw 12154 fldivp1 12278 prmpwdvds 12285 |
Copyright terms: Public domain | W3C validator |