ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con1biidc Unicode version

Theorem con1biidc 877
Description: A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.)
Hypothesis
Ref Expression
con1biidc.1  |-  (DECID  ph  ->  ( -.  ph  <->  ps ) )
Assertion
Ref Expression
con1biidc  |-  (DECID  ph  ->  ( -.  ps  <->  ph ) )

Proof of Theorem con1biidc
StepHypRef Expression
1 notnotbdc 872 . . 3  |-  (DECID  ph  ->  (
ph 
<->  -.  -.  ph )
)
2 con1biidc.1 . . . 4  |-  (DECID  ph  ->  ( -.  ph  <->  ps ) )
32notbid 667 . . 3  |-  (DECID  ph  ->  ( -.  -.  ph  <->  -.  ps )
)
41, 3bitrd 188 . 2  |-  (DECID  ph  ->  (
ph 
<->  -.  ps ) )
54bicomd 141 1  |-  (DECID  ph  ->  ( -.  ps  <->  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by:  con2biidc  879  necon1abiidc  2407  necon1bbiidc  2408
  Copyright terms: Public domain W3C validator