ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con1biidc Unicode version

Theorem con1biidc 863
Description: A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.)
Hypothesis
Ref Expression
con1biidc.1  |-  (DECID  ph  ->  ( -.  ph  <->  ps ) )
Assertion
Ref Expression
con1biidc  |-  (DECID  ph  ->  ( -.  ps  <->  ph ) )

Proof of Theorem con1biidc
StepHypRef Expression
1 notnotbdc 858 . . 3  |-  (DECID  ph  ->  (
ph 
<->  -.  -.  ph )
)
2 con1biidc.1 . . . 4  |-  (DECID  ph  ->  ( -.  ph  <->  ps ) )
32notbid 657 . . 3  |-  (DECID  ph  ->  ( -.  -.  ph  <->  -.  ps )
)
41, 3bitrd 187 . 2  |-  (DECID  ph  ->  (
ph 
<->  -.  ps ) )
54bicomd 140 1  |-  (DECID  ph  ->  ( -.  ps  <->  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104  DECID wdc 820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 821
This theorem is referenced by:  con2biidc  865  necon1abiidc  2384  necon1bbiidc  2385
  Copyright terms: Public domain W3C validator