| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > con1bdc | GIF version | ||
| Description: Contraposition. Bidirectional version of con1dc 857. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| con1bdc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → 𝜑)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | con1dc 857 | . . . 4 ⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | 
| 3 | con1dc 857 | . . . 4 ⊢ (DECID 𝜓 → ((¬ 𝜓 → 𝜑) → (¬ 𝜑 → 𝜓))) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜓 → 𝜑) → (¬ 𝜑 → 𝜓))) | 
| 5 | 2, 4 | impbid 129 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → 𝜑))) | 
| 6 | 5 | ex 115 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → 𝜑)))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |