ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  const Unicode version

Theorem const 842
Description: Contraposition of a stable proposition. See comment of condc 843. (Contributed by BJ, 18-Nov-2023.)
Assertion
Ref Expression
const  |-  (STAB  ph  ->  ( ( -.  ph  ->  -. 
ps )  ->  ( ps  ->  ph ) ) )

Proof of Theorem const
StepHypRef Expression
1 df-stab 821 . 2  |-  (STAB  ph  <->  ( -.  -.  ph  ->  ph ) )
2 con3 632 . . 3  |-  ( ( -.  ph  ->  -.  ps )  ->  ( -.  -.  ps  ->  -.  -.  ph )
)
3 notnot 619 . . . 4  |-  ( ps 
->  -.  -.  ps )
4 imim2 55 . . . 4  |-  ( ( -.  -.  ph  ->  ph )  ->  ( ( -.  -.  ps  ->  -.  -.  ph )  ->  ( -.  -.  ps  ->  ph )
) )
53, 4syl7 69 . . 3  |-  ( ( -.  -.  ph  ->  ph )  ->  ( ( -.  -.  ps  ->  -.  -.  ph )  ->  ( ps  ->  ph ) ) )
62, 5syl5 32 . 2  |-  ( ( -.  -.  ph  ->  ph )  ->  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
) )
71, 6sylbi 120 1  |-  (STAB  ph  ->  ( ( -.  ph  ->  -. 
ps )  ->  ( ps  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  STAB wstab 820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-stab 821
This theorem is referenced by:  condc  843
  Copyright terms: Public domain W3C validator