ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  const GIF version

Theorem const 842
Description: Contraposition when the antecedent is a negated stable proposition. See comment of condc 843. (Contributed by BJ, 18-Nov-2023.) (Proof shortened by BJ, 11-Nov-2024.)
Assertion
Ref Expression
const (STAB 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))

Proof of Theorem const
StepHypRef Expression
1 con2 633 . 2 ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → ¬ ¬ 𝜑))
2 df-stab 821 . . 3 (STAB 𝜑 ↔ (¬ ¬ 𝜑𝜑))
32biimpi 119 . 2 (STAB 𝜑 → (¬ ¬ 𝜑𝜑))
41, 3syl9r 73 1 (STAB 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  STAB wstab 820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-stab 821
This theorem is referenced by:  condc  843
  Copyright terms: Public domain W3C validator