ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl9r Unicode version

Theorem syl9r 73
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl9r.1  |-  ( ph  ->  ( ps  ->  ch ) )
syl9r.2  |-  ( th 
->  ( ch  ->  ta ) )
Assertion
Ref Expression
syl9r  |-  ( th 
->  ( ph  ->  ( ps  ->  ta ) ) )

Proof of Theorem syl9r
StepHypRef Expression
1 syl9r.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
2 syl9r.2 . . 3  |-  ( th 
->  ( ch  ->  ta ) )
31, 2syl9 72 . 2  |-  ( ph  ->  ( th  ->  ( ps  ->  ta ) ) )
43com12 30 1  |-  ( th 
->  ( ph  ->  ( ps  ->  ta ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  sylan9r  408  const  847  pm2.85dc  900  looinvdc  910  pclem6  1369  nfimd  1578  19.23t  1670  fununi  5266  dfimafn  5545  funimass3  5612  nnsub  8917  bj-con1st  13786
  Copyright terms: Public domain W3C validator