ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcbiit Unicode version

Theorem dcbiit 829
Description: Equivalence property for decidability. Closed form. (Contributed by BJ, 27-Jan-2020.)
Assertion
Ref Expression
dcbiit  |-  ( (
ph 
<->  ps )  ->  (DECID  ph  <-> DECID  ps ) )

Proof of Theorem dcbiit
StepHypRef Expression
1 id 19 . 2  |-  ( (
ph 
<->  ps )  ->  ( ph 
<->  ps ) )
21dcbid 828 1  |-  ( (
ph 
<->  ps )  ->  (DECID  ph  <-> DECID  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by:  dcbii  830  bj-d0clsepcl  13807
  Copyright terms: Public domain W3C validator