Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-d0clsepcl | Unicode version |
Description: Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-d0clsepcl | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . . . . . . 7 | |
2 | 1 | bj-snex 13795 | . . . . . 6 |
3 | 2 | zfauscl 4102 | . . . . 5 |
4 | eleq1 2229 | . . . . . . 7 | |
5 | eleq1 2229 | . . . . . . . 8 | |
6 | 5 | anbi1d 461 | . . . . . . 7 |
7 | 4, 6 | bibi12d 234 | . . . . . 6 |
8 | 1, 7 | spcv 2820 | . . . . 5 |
9 | 3, 8 | eximii 1590 | . . . 4 |
10 | 1 | snid 3607 | . . . . . . . 8 |
11 | 10 | biantrur 301 | . . . . . . 7 |
12 | 11 | bicomi 131 | . . . . . 6 |
13 | 12 | bibi2i 226 | . . . . 5 |
14 | 13 | exbii 1593 | . . . 4 |
15 | 9, 14 | mpbi 144 | . . 3 |
16 | bj-bd0el 13750 | . . . . 5 BOUNDED | |
17 | 16 | ax-bj-d0cl 13806 | . . . 4 DECID |
18 | dcbiit 829 | . . . 4 DECID DECID | |
19 | 17, 18 | mpbii 147 | . . 3 DECID |
20 | 15, 19 | eximii 1590 | . 2 DECID |
21 | bj-ex 13643 | . 2 DECID DECID | |
22 | 20, 21 | ax-mp 5 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 DECID wdc 824 wal 1341 wceq 1343 wex 1480 wcel 2136 c0 3409 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pr 4187 ax-bd0 13695 ax-bdim 13696 ax-bdor 13698 ax-bdn 13699 ax-bdal 13700 ax-bdex 13701 ax-bdeq 13702 ax-bdsep 13766 ax-bj-d0cl 13806 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-bdc 13723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |