Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-d0clsepcl Unicode version

Theorem bj-d0clsepcl 16060
Description: Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-d0clsepcl  |- DECID  ph

Proof of Theorem bj-d0clsepcl
Dummy variables  x  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4187 . . . . . . 7  |-  (/)  e.  _V
21bj-snex 16048 . . . . . 6  |-  { (/) }  e.  _V
32zfauscl 4180 . . . . 5  |-  E. a A. x ( x  e.  a  <->  ( x  e. 
{ (/) }  /\  ph ) )
4 eleq1 2270 . . . . . . 7  |-  ( x  =  (/)  ->  ( x  e.  a  <->  (/)  e.  a ) )
5 eleq1 2270 . . . . . . . 8  |-  ( x  =  (/)  ->  ( x  e.  { (/) }  <->  (/)  e.  { (/)
} ) )
65anbi1d 465 . . . . . . 7  |-  ( x  =  (/)  ->  ( ( x  e.  { (/) }  /\  ph )  <->  ( (/)  e.  { (/)
}  /\  ph ) ) )
74, 6bibi12d 235 . . . . . 6  |-  ( x  =  (/)  ->  ( ( x  e.  a  <->  ( x  e.  { (/) }  /\  ph ) )  <->  ( (/)  e.  a  <-> 
( (/)  e.  { (/) }  /\  ph ) ) ) )
81, 7spcv 2874 . . . . 5  |-  ( A. x ( x  e.  a  <->  ( x  e. 
{ (/) }  /\  ph ) )  ->  ( (/) 
e.  a  <->  ( (/)  e.  { (/)
}  /\  ph ) ) )
93, 8eximii 1626 . . . 4  |-  E. a
( (/)  e.  a  <->  ( (/)  e.  { (/)
}  /\  ph ) )
101snid 3674 . . . . . . . 8  |-  (/)  e.  { (/)
}
1110biantrur 303 . . . . . . 7  |-  ( ph  <->  (
(/)  e.  { (/) }  /\  ph ) )
1211bicomi 132 . . . . . 6  |-  ( (
(/)  e.  { (/) }  /\  ph )  <->  ph )
1312bibi2i 227 . . . . 5  |-  ( (
(/)  e.  a  <->  ( (/)  e.  { (/)
}  /\  ph ) )  <-> 
( (/)  e.  a  <->  ph ) )
1413exbii 1629 . . . 4  |-  ( E. a ( (/)  e.  a  <-> 
( (/)  e.  { (/) }  /\  ph ) )  <->  E. a ( (/)  e.  a  <->  ph ) )
159, 14mpbi 145 . . 3  |-  E. a
( (/)  e.  a  <->  ph )
16 bj-bd0el 16003 . . . . 5  |- BOUNDED  (/)  e.  a
1716ax-bj-d0cl 16059 . . . 4  |- DECID  (/)  e.  a
18 dcbiit 841 . . . 4  |-  ( (
(/)  e.  a  <->  ph )  -> 
(DECID  (/)  e.  a  <-> DECID  ph ) )
1917, 18mpbii 148 . . 3  |-  ( (
(/)  e.  a  <->  ph )  -> DECID  ph )
2015, 19eximii 1626 . 2  |-  E. aDECID  ph
21 bj-ex 15898 . 2  |-  ( E. aDECID 
ph  -> DECID  ph )
2220, 21ax-mp 5 1  |- DECID  ph
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 836   A.wal 1371    = wceq 1373   E.wex 1516    e. wcel 2178   (/)c0 3468   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pr 4269  ax-bd0 15948  ax-bdim 15949  ax-bdor 15951  ax-bdn 15952  ax-bdal 15953  ax-bdex 15954  ax-bdeq 15955  ax-bdsep 16019  ax-bj-d0cl 16059
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-pr 3650  df-bdc 15976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator