Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-d0clsepcl | Unicode version |
Description: Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-d0clsepcl | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4125 | . . . . . . 7 | |
2 | 1 | bj-snex 14234 | . . . . . 6 |
3 | 2 | zfauscl 4118 | . . . . 5 |
4 | eleq1 2238 | . . . . . . 7 | |
5 | eleq1 2238 | . . . . . . . 8 | |
6 | 5 | anbi1d 465 | . . . . . . 7 |
7 | 4, 6 | bibi12d 235 | . . . . . 6 |
8 | 1, 7 | spcv 2829 | . . . . 5 |
9 | 3, 8 | eximii 1600 | . . . 4 |
10 | 1 | snid 3620 | . . . . . . . 8 |
11 | 10 | biantrur 303 | . . . . . . 7 |
12 | 11 | bicomi 132 | . . . . . 6 |
13 | 12 | bibi2i 227 | . . . . 5 |
14 | 13 | exbii 1603 | . . . 4 |
15 | 9, 14 | mpbi 145 | . . 3 |
16 | bj-bd0el 14189 | . . . . 5 BOUNDED | |
17 | 16 | ax-bj-d0cl 14245 | . . . 4 DECID |
18 | dcbiit 839 | . . . 4 DECID DECID | |
19 | 17, 18 | mpbii 148 | . . 3 DECID |
20 | 15, 19 | eximii 1600 | . 2 DECID |
21 | bj-ex 14083 | . 2 DECID DECID | |
22 | 20, 21 | ax-mp 5 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 DECID wdc 834 wal 1351 wceq 1353 wex 1490 wcel 2146 c0 3420 csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pr 4203 ax-bd0 14134 ax-bdim 14135 ax-bdor 14137 ax-bdn 14138 ax-bdal 14139 ax-bdex 14140 ax-bdeq 14141 ax-bdsep 14205 ax-bj-d0cl 14245 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-sn 3595 df-pr 3596 df-bdc 14162 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |