| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbii | Unicode version | ||
| Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
| Ref | Expression |
|---|---|
| dcbii.1 |
|
| Ref | Expression |
|---|---|
| dcbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcbii.1 |
. 2
| |
| 2 | dcbiit 841 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-dc 837 |
| This theorem is referenced by: dcbi 939 dcned 2382 dfrex2dc 2497 euxfr2dc 2958 exmidexmid 4241 pw1fin 7009 tpfidceq 7029 dcfi 7085 elnn0dc 9734 elnndc 9735 exfzdc 10371 fprod1p 11943 bitsinv1 12306 nnwosdc 12393 prmdc 12485 pclemdc 12644 4sqlemafi 12751 4sqleminfi 12753 4sqexercise1 12754 nninfdclemcl 12852 nninfdclemp1 12854 psr1clfi 14483 nninfsellemdc 15984 |
| Copyright terms: Public domain | W3C validator |