Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcbii | Unicode version |
Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
Ref | Expression |
---|---|
dcbii.1 |
Ref | Expression |
---|---|
dcbii | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcbii.1 | . 2 | |
2 | dcbiit 835 | . 2 DECID DECID | |
3 | 1, 2 | ax-mp 5 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wb 104 DECID wdc 830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 |
This theorem depends on definitions: df-bi 116 df-dc 831 |
This theorem is referenced by: dcbi 932 dcned 2347 dfrex2dc 2462 euxfr2dc 2916 exmidexmid 4183 pw1fin 6892 dcfi 6962 elnn0dc 9574 elnndc 9575 exfzdc 10200 fprod1p 11566 nnwosdc 11998 prmdc 12088 pclemdc 12246 nninfdclemcl 12407 nninfdclemp1 12409 nninfsellemdc 14128 |
Copyright terms: Public domain | W3C validator |