| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbii | Unicode version | ||
| Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
| Ref | Expression |
|---|---|
| dcbii.1 |
|
| Ref | Expression |
|---|---|
| dcbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcbii.1 |
. 2
| |
| 2 | dcbiit 844 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-dc 840 |
| This theorem is referenced by: dcbi 942 dcned 2406 dfrex2dc 2521 euxfr2dc 2988 exmidexmid 4280 pw1fin 7072 tpfidceq 7092 dcfi 7148 elnn0dc 9806 elnndc 9807 exfzdc 10446 fprod1p 12110 bitsinv1 12473 nnwosdc 12560 prmdc 12652 pclemdc 12811 4sqlemafi 12918 4sqleminfi 12920 4sqexercise1 12921 nninfdclemcl 13019 nninfdclemp1 13021 psr1clfi 14652 nninfsellemdc 16376 |
| Copyright terms: Public domain | W3C validator |