ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcbii Unicode version

Theorem dcbii 845
Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.)
Hypothesis
Ref Expression
dcbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
dcbii  |-  (DECID  ph  <-> DECID  ps )

Proof of Theorem dcbii
StepHypRef Expression
1 dcbii.1 . 2  |-  ( ph  <->  ps )
2 dcbiit 844 . 2  |-  ( (
ph 
<->  ps )  ->  (DECID  ph  <-> DECID  ps ) )
31, 2ax-mp 5 1  |-  (DECID  ph  <-> DECID  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840
This theorem is referenced by:  dcbi  942  dcned  2406  dfrex2dc  2521  euxfr2dc  2988  exmidexmid  4280  pw1fin  7072  tpfidceq  7092  dcfi  7148  elnn0dc  9806  elnndc  9807  exfzdc  10446  fprod1p  12110  bitsinv1  12473  nnwosdc  12560  prmdc  12652  pclemdc  12811  4sqlemafi  12918  4sqleminfi  12920  4sqexercise1  12921  nninfdclemcl  13019  nninfdclemp1  13021  psr1clfi  14652  nninfsellemdc  16376
  Copyright terms: Public domain W3C validator