ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcbii Unicode version

Theorem dcbii 826
Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.)
Hypothesis
Ref Expression
dcbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
dcbii  |-  (DECID  ph  <-> DECID  ps )

Proof of Theorem dcbii
StepHypRef Expression
1 dcbii.1 . 2  |-  ( ph  <->  ps )
2 dcbiit 825 . 2  |-  ( (
ph 
<->  ps )  ->  (DECID  ph  <-> DECID  ps ) )
31, 2ax-mp 5 1  |-  (DECID  ph  <-> DECID  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 104  DECID wdc 820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 821
This theorem is referenced by:  dcbi  921  dcned  2333  dfrex2dc  2448  euxfr2dc  2897  exmidexmid  4156  pw1fin  6848  exfzdc  10121  fprod1p  11478  nninfsellemdc  13545
  Copyright terms: Public domain W3C validator