ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcbii Unicode version

Theorem dcbii 841
Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.)
Hypothesis
Ref Expression
dcbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
dcbii  |-  (DECID  ph  <-> DECID  ps )

Proof of Theorem dcbii
StepHypRef Expression
1 dcbii.1 . 2  |-  ( ph  <->  ps )
2 dcbiit 840 . 2  |-  ( (
ph 
<->  ps )  ->  (DECID  ph  <-> DECID  ps ) )
31, 2ax-mp 5 1  |-  (DECID  ph  <-> DECID  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  dcbi  938  dcned  2373  dfrex2dc  2488  euxfr2dc  2949  exmidexmid  4230  pw1fin  6980  tpfidceq  7000  dcfi  7056  elnn0dc  9702  elnndc  9703  exfzdc  10333  fprod1p  11781  bitsinv1  12144  nnwosdc  12231  prmdc  12323  pclemdc  12482  4sqlemafi  12589  4sqleminfi  12591  4sqexercise1  12592  nninfdclemcl  12690  nninfdclemp1  12692  psr1clfi  14316  nninfsellemdc  15741
  Copyright terms: Public domain W3C validator