![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcbii | Unicode version |
Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
Ref | Expression |
---|---|
dcbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
dcbii |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcbii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dcbiit 840 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
This theorem depends on definitions: df-bi 117 df-dc 836 |
This theorem is referenced by: dcbi 938 dcned 2370 dfrex2dc 2485 euxfr2dc 2945 exmidexmid 4225 pw1fin 6966 dcfi 7040 elnn0dc 9676 elnndc 9677 exfzdc 10307 fprod1p 11742 nnwosdc 12176 prmdc 12268 pclemdc 12426 4sqlemafi 12533 4sqleminfi 12535 4sqexercise1 12536 nninfdclemcl 12605 nninfdclemp1 12607 nninfsellemdc 15500 |
Copyright terms: Public domain | W3C validator |