| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbii | Unicode version | ||
| Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
| Ref | Expression |
|---|---|
| dcbii.1 |
|
| Ref | Expression |
|---|---|
| dcbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcbii.1 |
. 2
| |
| 2 | dcbiit 841 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-dc 837 |
| This theorem is referenced by: dcbi 939 dcned 2384 dfrex2dc 2499 euxfr2dc 2965 exmidexmid 4256 pw1fin 7033 tpfidceq 7053 dcfi 7109 elnn0dc 9767 elnndc 9768 exfzdc 10406 fprod1p 12025 bitsinv1 12388 nnwosdc 12475 prmdc 12567 pclemdc 12726 4sqlemafi 12833 4sqleminfi 12835 4sqexercise1 12836 nninfdclemcl 12934 nninfdclemp1 12936 psr1clfi 14565 nninfsellemdc 16149 |
| Copyright terms: Public domain | W3C validator |