ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcbii Unicode version

Theorem dcbii 836
Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.)
Hypothesis
Ref Expression
dcbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
dcbii  |-  (DECID  ph  <-> DECID  ps )

Proof of Theorem dcbii
StepHypRef Expression
1 dcbii.1 . 2  |-  ( ph  <->  ps )
2 dcbiit 835 . 2  |-  ( (
ph 
<->  ps )  ->  (DECID  ph  <-> DECID  ps ) )
31, 2ax-mp 5 1  |-  (DECID  ph  <-> DECID  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 104  DECID wdc 830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705
This theorem depends on definitions:  df-bi 116  df-dc 831
This theorem is referenced by:  dcbi  932  dcned  2347  dfrex2dc  2462  euxfr2dc  2916  exmidexmid  4183  pw1fin  6892  dcfi  6962  elnn0dc  9574  elnndc  9575  exfzdc  10200  fprod1p  11566  nnwosdc  11998  prmdc  12088  pclemdc  12246  nninfdclemcl  12407  nninfdclemp1  12409  nninfsellemdc  14128
  Copyright terms: Public domain W3C validator