| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbii | Unicode version | ||
| Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
| Ref | Expression |
|---|---|
| dcbii.1 |
|
| Ref | Expression |
|---|---|
| dcbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcbii.1 |
. 2
| |
| 2 | dcbiit 841 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-dc 837 |
| This theorem is referenced by: dcbi 939 dcned 2382 dfrex2dc 2497 euxfr2dc 2958 exmidexmid 4240 pw1fin 7007 tpfidceq 7027 dcfi 7083 elnn0dc 9732 elnndc 9733 exfzdc 10369 fprod1p 11910 bitsinv1 12273 nnwosdc 12360 prmdc 12452 pclemdc 12611 4sqlemafi 12718 4sqleminfi 12720 4sqexercise1 12721 nninfdclemcl 12819 nninfdclemp1 12821 psr1clfi 14450 nninfsellemdc 15947 |
| Copyright terms: Public domain | W3C validator |