Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-card | Unicode version |
Description: Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.) |
Ref | Expression |
---|---|
df-card |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccrd 7156 | . 2 | |
2 | vx | . . 3 | |
3 | cvv 2730 | . . 3 | |
4 | vy | . . . . . . 7 | |
5 | 4 | cv 1347 | . . . . . 6 |
6 | 2 | cv 1347 | . . . . . 6 |
7 | cen 6716 | . . . . . 6 | |
8 | 5, 6, 7 | wbr 3989 | . . . . 5 |
9 | con0 4348 | . . . . 5 | |
10 | 8, 4, 9 | crab 2452 | . . . 4 |
11 | 10 | cint 3831 | . . 3 |
12 | 2, 3, 11 | cmpt 4050 | . 2 |
13 | 1, 12 | wceq 1348 | 1 |
Colors of variables: wff set class |
This definition is referenced by: cardcl 7158 isnumi 7159 cardval3ex 7162 |
Copyright terms: Public domain | W3C validator |