Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cardcl | Unicode version |
Description: The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.) |
Ref | Expression |
---|---|
cardcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-card 7144 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | breq2 3991 | . . . . . 6 | |
4 | 3 | rabbidv 2719 | . . . . 5 |
5 | 4 | inteqd 3834 | . . . 4 |
6 | 5 | adantl 275 | . . 3 |
7 | encv 6720 | . . . . 5 | |
8 | 7 | simprd 113 | . . . 4 |
9 | 8 | rexlimivw 2583 | . . 3 |
10 | intexrabim 4137 | . . 3 | |
11 | 2, 6, 9, 10 | fvmptd 5575 | . 2 |
12 | onintrab2im 4500 | . 2 | |
13 | 11, 12 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 wrex 2449 crab 2452 cvv 2730 cint 3829 class class class wbr 3987 cmpt 4048 con0 4346 cfv 5196 cen 6712 ccrd 7143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-en 6715 df-card 7144 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |