ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardcl Unicode version

Theorem cardcl 7241
Description: The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardcl  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  e.  On )
Distinct variable group:    y, A

Proof of Theorem cardcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-card 7240 . . . 4  |-  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
)
21a1i 9 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
) )
3 breq2 4033 . . . . . 6  |-  ( x  =  A  ->  (
y  ~~  x  <->  y  ~~  A ) )
43rabbidv 2749 . . . . 5  |-  ( x  =  A  ->  { y  e.  On  |  y 
~~  x }  =  { y  e.  On  |  y  ~~  A }
)
54inteqd 3875 . . . 4  |-  ( x  =  A  ->  |^| { y  e.  On  |  y 
~~  x }  =  |^| { y  e.  On  |  y  ~~  A }
)
65adantl 277 . . 3  |-  ( ( E. y  e.  On  y  ~~  A  /\  x  =  A )  ->  |^| { y  e.  On  |  y 
~~  x }  =  |^| { y  e.  On  |  y  ~~  A }
)
7 encv 6800 . . . . 5  |-  ( y 
~~  A  ->  (
y  e.  _V  /\  A  e.  _V )
)
87simprd 114 . . . 4  |-  ( y 
~~  A  ->  A  e.  _V )
98rexlimivw 2607 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  A  e. 
_V )
10 intexrabim 4182 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  _V )
112, 6, 9, 10fvmptd 5638 . 2  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  =  |^| { y  e.  On  | 
y  ~~  A }
)
12 onintrab2im 4550 . 2  |-  ( E. y  e.  On  y  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  On )
1311, 12eqeltrd 2270 1  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   E.wrex 2473   {crab 2476   _Vcvv 2760   |^|cint 3870   class class class wbr 4029    |-> cmpt 4090   Oncon0 4394   ` cfv 5254    ~~ cen 6792   cardccrd 7239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-en 6795  df-card 7240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator