ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardcl Unicode version

Theorem cardcl 7353
Description: The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardcl  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  e.  On )
Distinct variable group:    y, A

Proof of Theorem cardcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-card 7351 . . . 4  |-  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
)
21a1i 9 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
) )
3 breq2 4087 . . . . . 6  |-  ( x  =  A  ->  (
y  ~~  x  <->  y  ~~  A ) )
43rabbidv 2788 . . . . 5  |-  ( x  =  A  ->  { y  e.  On  |  y 
~~  x }  =  { y  e.  On  |  y  ~~  A }
)
54inteqd 3928 . . . 4  |-  ( x  =  A  ->  |^| { y  e.  On  |  y 
~~  x }  =  |^| { y  e.  On  |  y  ~~  A }
)
65adantl 277 . . 3  |-  ( ( E. y  e.  On  y  ~~  A  /\  x  =  A )  ->  |^| { y  e.  On  |  y 
~~  x }  =  |^| { y  e.  On  |  y  ~~  A }
)
7 encv 6893 . . . . 5  |-  ( y 
~~  A  ->  (
y  e.  _V  /\  A  e.  _V )
)
87simprd 114 . . . 4  |-  ( y 
~~  A  ->  A  e.  _V )
98rexlimivw 2644 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  A  e. 
_V )
10 intexrabim 4237 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  _V )
112, 6, 9, 10fvmptd 5715 . 2  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  =  |^| { y  e.  On  | 
y  ~~  A }
)
12 onintrab2im 4610 . 2  |-  ( E. y  e.  On  y  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  On )
1311, 12eqeltrd 2306 1  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   E.wrex 2509   {crab 2512   _Vcvv 2799   |^|cint 3923   class class class wbr 4083    |-> cmpt 4145   Oncon0 4454   ` cfv 5318    ~~ cen 6885   cardccrd 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-en 6888  df-card 7351
This theorem is referenced by:  ficardon  7361
  Copyright terms: Public domain W3C validator