ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardcl Unicode version

Theorem cardcl 7137
Description: The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardcl  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  e.  On )
Distinct variable group:    y, A

Proof of Theorem cardcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-card 7136 . . . 4  |-  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
)
21a1i 9 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
) )
3 breq2 3986 . . . . . 6  |-  ( x  =  A  ->  (
y  ~~  x  <->  y  ~~  A ) )
43rabbidv 2715 . . . . 5  |-  ( x  =  A  ->  { y  e.  On  |  y 
~~  x }  =  { y  e.  On  |  y  ~~  A }
)
54inteqd 3829 . . . 4  |-  ( x  =  A  ->  |^| { y  e.  On  |  y 
~~  x }  =  |^| { y  e.  On  |  y  ~~  A }
)
65adantl 275 . . 3  |-  ( ( E. y  e.  On  y  ~~  A  /\  x  =  A )  ->  |^| { y  e.  On  |  y 
~~  x }  =  |^| { y  e.  On  |  y  ~~  A }
)
7 encv 6712 . . . . 5  |-  ( y 
~~  A  ->  (
y  e.  _V  /\  A  e.  _V )
)
87simprd 113 . . . 4  |-  ( y 
~~  A  ->  A  e.  _V )
98rexlimivw 2579 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  A  e. 
_V )
10 intexrabim 4132 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  _V )
112, 6, 9, 10fvmptd 5567 . 2  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  =  |^| { y  e.  On  | 
y  ~~  A }
)
12 onintrab2im 4495 . 2  |-  ( E. y  e.  On  y  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  On )
1311, 12eqeltrd 2243 1  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   E.wrex 2445   {crab 2448   _Vcvv 2726   |^|cint 3824   class class class wbr 3982    |-> cmpt 4043   Oncon0 4341   ` cfv 5188    ~~ cen 6704   cardccrd 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-en 6707  df-card 7136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator