ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnumi Unicode version

Theorem isnumi 7289
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnumi  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  dom  card )

Proof of Theorem isnumi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4047 . . . . 5  |-  ( y  =  A  ->  (
y  ~~  B  <->  A  ~~  B ) )
21rspcev 2877 . . . 4  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  E. y  e.  On  y  ~~  B )
3 intexrabim 4197 . . . 4  |-  ( E. y  e.  On  y  ~~  B  ->  |^| { y  e.  On  |  y 
~~  B }  e.  _V )
42, 3syl 14 . . 3  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  |^| { y  e.  On  |  y  ~~  B }  e.  _V )
5 encv 6833 . . . . . 6  |-  ( A 
~~  B  ->  ( A  e.  _V  /\  B  e.  _V ) )
65simprd 114 . . . . 5  |-  ( A 
~~  B  ->  B  e.  _V )
7 breq2 4048 . . . . . . . . 9  |-  ( x  =  B  ->  (
y  ~~  x  <->  y  ~~  B ) )
87rabbidv 2761 . . . . . . . 8  |-  ( x  =  B  ->  { y  e.  On  |  y 
~~  x }  =  { y  e.  On  |  y  ~~  B }
)
98inteqd 3890 . . . . . . 7  |-  ( x  =  B  ->  |^| { y  e.  On  |  y 
~~  x }  =  |^| { y  e.  On  |  y  ~~  B }
)
109eleq1d 2274 . . . . . 6  |-  ( x  =  B  ->  ( |^| { y  e.  On  |  y  ~~  x }  e.  _V  <->  |^| { y  e.  On  |  y  ~~  B }  e.  _V ) )
1110elrab3 2930 . . . . 5  |-  ( B  e.  _V  ->  ( B  e.  { x  e.  _V  |  |^| { y  e.  On  |  y 
~~  x }  e.  _V }  <->  |^| { y  e.  On  |  y  ~~  B }  e.  _V ) )
126, 11syl 14 . . . 4  |-  ( A 
~~  B  ->  ( B  e.  { x  e.  _V  |  |^| { y  e.  On  |  y 
~~  x }  e.  _V }  <->  |^| { y  e.  On  |  y  ~~  B }  e.  _V ) )
1312adantl 277 . . 3  |-  ( ( A  e.  On  /\  A  ~~  B )  -> 
( B  e.  {
x  e.  _V  |  |^| { y  e.  On  |  y  ~~  x }  e.  _V }  <->  |^| { y  e.  On  |  y 
~~  B }  e.  _V ) )
144, 13mpbird 167 . 2  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  { x  e.  _V  |  |^| { y  e.  On  |  y 
~~  x }  e.  _V } )
15 df-card 7286 . . 3  |-  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
)
1615dmmpt 5178 . 2  |-  dom  card  =  { x  e.  _V  |  |^| { y  e.  On  |  y  ~~  x }  e.  _V }
1714, 16eleqtrrdi 2299 1  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  dom  card )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485   {crab 2488   _Vcvv 2772   |^|cint 3885   class class class wbr 4044   Oncon0 4410   dom cdm 4675    ~~ cen 6825   cardccrd 7284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-en 6828  df-card 7286
This theorem is referenced by:  finnum  7290  onenon  7291
  Copyright terms: Public domain W3C validator