Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isnumi | Unicode version |
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
isnumi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3985 | . . . . 5 | |
2 | 1 | rspcev 2830 | . . . 4 |
3 | intexrabim 4132 | . . . 4 | |
4 | 2, 3 | syl 14 | . . 3 |
5 | encv 6712 | . . . . . 6 | |
6 | 5 | simprd 113 | . . . . 5 |
7 | breq2 3986 | . . . . . . . . 9 | |
8 | 7 | rabbidv 2715 | . . . . . . . 8 |
9 | 8 | inteqd 3829 | . . . . . . 7 |
10 | 9 | eleq1d 2235 | . . . . . 6 |
11 | 10 | elrab3 2883 | . . . . 5 |
12 | 6, 11 | syl 14 | . . . 4 |
13 | 12 | adantl 275 | . . 3 |
14 | 4, 13 | mpbird 166 | . 2 |
15 | df-card 7136 | . . 3 | |
16 | 15 | dmmpt 5099 | . 2 |
17 | 14, 16 | eleqtrrdi 2260 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wrex 2445 crab 2448 cvv 2726 cint 3824 class class class wbr 3982 con0 4341 cdm 4604 cen 6704 ccrd 7135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-en 6707 df-card 7136 |
This theorem is referenced by: finnum 7139 onenon 7140 |
Copyright terms: Public domain | W3C validator |