ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnumi Unicode version

Theorem isnumi 7038
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnumi  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  dom  card )

Proof of Theorem isnumi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3932 . . . . 5  |-  ( y  =  A  ->  (
y  ~~  B  <->  A  ~~  B ) )
21rspcev 2789 . . . 4  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  E. y  e.  On  y  ~~  B )
3 intexrabim 4078 . . . 4  |-  ( E. y  e.  On  y  ~~  B  ->  |^| { y  e.  On  |  y 
~~  B }  e.  _V )
42, 3syl 14 . . 3  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  |^| { y  e.  On  |  y  ~~  B }  e.  _V )
5 encv 6640 . . . . . 6  |-  ( A 
~~  B  ->  ( A  e.  _V  /\  B  e.  _V ) )
65simprd 113 . . . . 5  |-  ( A 
~~  B  ->  B  e.  _V )
7 breq2 3933 . . . . . . . . 9  |-  ( x  =  B  ->  (
y  ~~  x  <->  y  ~~  B ) )
87rabbidv 2675 . . . . . . . 8  |-  ( x  =  B  ->  { y  e.  On  |  y 
~~  x }  =  { y  e.  On  |  y  ~~  B }
)
98inteqd 3776 . . . . . . 7  |-  ( x  =  B  ->  |^| { y  e.  On  |  y 
~~  x }  =  |^| { y  e.  On  |  y  ~~  B }
)
109eleq1d 2208 . . . . . 6  |-  ( x  =  B  ->  ( |^| { y  e.  On  |  y  ~~  x }  e.  _V  <->  |^| { y  e.  On  |  y  ~~  B }  e.  _V ) )
1110elrab3 2841 . . . . 5  |-  ( B  e.  _V  ->  ( B  e.  { x  e.  _V  |  |^| { y  e.  On  |  y 
~~  x }  e.  _V }  <->  |^| { y  e.  On  |  y  ~~  B }  e.  _V ) )
126, 11syl 14 . . . 4  |-  ( A 
~~  B  ->  ( B  e.  { x  e.  _V  |  |^| { y  e.  On  |  y 
~~  x }  e.  _V }  <->  |^| { y  e.  On  |  y  ~~  B }  e.  _V ) )
1312adantl 275 . . 3  |-  ( ( A  e.  On  /\  A  ~~  B )  -> 
( B  e.  {
x  e.  _V  |  |^| { y  e.  On  |  y  ~~  x }  e.  _V }  <->  |^| { y  e.  On  |  y 
~~  B }  e.  _V ) )
144, 13mpbird 166 . 2  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  { x  e.  _V  |  |^| { y  e.  On  |  y 
~~  x }  e.  _V } )
15 df-card 7036 . . 3  |-  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
)
1615dmmpt 5034 . 2  |-  dom  card  =  { x  e.  _V  |  |^| { y  e.  On  |  y  ~~  x }  e.  _V }
1714, 16eleqtrrdi 2233 1  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  dom  card )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2417   {crab 2420   _Vcvv 2686   |^|cint 3771   class class class wbr 3929   Oncon0 4285   dom cdm 4539    ~~ cen 6632   cardccrd 7035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-en 6635  df-card 7036
This theorem is referenced by:  finnum  7039  onenon  7040
  Copyright terms: Public domain W3C validator