ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardval3ex Unicode version

Theorem cardval3ex 7263
Description: The value of  ( card `  A ). (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardval3ex  |-  ( E. x  e.  On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e.  On  | 
y  ~~  A }
)
Distinct variable group:    x, A, y

Proof of Theorem cardval3ex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 encv 6814 . . . 4  |-  ( x 
~~  A  ->  (
x  e.  _V  /\  A  e.  _V )
)
21simprd 114 . . 3  |-  ( x 
~~  A  ->  A  e.  _V )
32rexlimivw 2610 . 2  |-  ( E. x  e.  On  x  ~~  A  ->  A  e. 
_V )
4 breq1 4037 . . . 4  |-  ( y  =  x  ->  (
y  ~~  A  <->  x  ~~  A ) )
54cbvrexv 2730 . . 3  |-  ( E. y  e.  On  y  ~~  A  <->  E. x  e.  On  x  ~~  A )
6 intexrabim 4187 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  _V )
75, 6sylbir 135 . 2  |-  ( E. x  e.  On  x  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  _V )
8 breq2 4038 . . . . 5  |-  ( z  =  A  ->  (
y  ~~  z  <->  y  ~~  A ) )
98rabbidv 2752 . . . 4  |-  ( z  =  A  ->  { y  e.  On  |  y 
~~  z }  =  { y  e.  On  |  y  ~~  A }
)
109inteqd 3880 . . 3  |-  ( z  =  A  ->  |^| { y  e.  On  |  y 
~~  z }  =  |^| { y  e.  On  |  y  ~~  A }
)
11 df-card 7257 . . 3  |-  card  =  ( z  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  z } )
1210, 11fvmptg 5640 . 2  |-  ( ( A  e.  _V  /\  |^|
{ y  e.  On  |  y  ~~  A }  e.  _V )  ->  ( card `  A )  = 
|^| { y  e.  On  |  y  ~~  A }
)
133, 7, 12syl2anc 411 1  |-  ( E. x  e.  On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e.  On  | 
y  ~~  A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   E.wrex 2476   {crab 2479   _Vcvv 2763   |^|cint 3875   class class class wbr 4034   Oncon0 4399   ` cfv 5259    ~~ cen 6806   cardccrd 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-en 6809  df-card 7257
This theorem is referenced by:  oncardval  7264  carden2bex  7268
  Copyright terms: Public domain W3C validator