ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardval3ex Unicode version

Theorem cardval3ex 7135
Description: The value of  ( card `  A ). (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardval3ex  |-  ( E. x  e.  On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e.  On  | 
y  ~~  A }
)
Distinct variable group:    x, A, y

Proof of Theorem cardval3ex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 encv 6706 . . . 4  |-  ( x 
~~  A  ->  (
x  e.  _V  /\  A  e.  _V )
)
21simprd 113 . . 3  |-  ( x 
~~  A  ->  A  e.  _V )
32rexlimivw 2577 . 2  |-  ( E. x  e.  On  x  ~~  A  ->  A  e. 
_V )
4 breq1 3982 . . . 4  |-  ( y  =  x  ->  (
y  ~~  A  <->  x  ~~  A ) )
54cbvrexv 2691 . . 3  |-  ( E. y  e.  On  y  ~~  A  <->  E. x  e.  On  x  ~~  A )
6 intexrabim 4129 . . 3  |-  ( E. y  e.  On  y  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  _V )
75, 6sylbir 134 . 2  |-  ( E. x  e.  On  x  ~~  A  ->  |^| { y  e.  On  |  y 
~~  A }  e.  _V )
8 breq2 3983 . . . . 5  |-  ( z  =  A  ->  (
y  ~~  z  <->  y  ~~  A ) )
98rabbidv 2713 . . . 4  |-  ( z  =  A  ->  { y  e.  On  |  y 
~~  z }  =  { y  e.  On  |  y  ~~  A }
)
109inteqd 3826 . . 3  |-  ( z  =  A  ->  |^| { y  e.  On  |  y 
~~  z }  =  |^| { y  e.  On  |  y  ~~  A }
)
11 df-card 7130 . . 3  |-  card  =  ( z  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  z } )
1210, 11fvmptg 5559 . 2  |-  ( ( A  e.  _V  /\  |^|
{ y  e.  On  |  y  ~~  A }  e.  _V )  ->  ( card `  A )  = 
|^| { y  e.  On  |  y  ~~  A }
)
133, 7, 12syl2anc 409 1  |-  ( E. x  e.  On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e.  On  | 
y  ~~  A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342    e. wcel 2135   E.wrex 2443   {crab 2446   _Vcvv 2724   |^|cint 3821   class class class wbr 3979   Oncon0 4338   ` cfv 5185    ~~ cen 6698   cardccrd 7129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2726  df-sbc 2950  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-br 3980  df-opab 4041  df-mpt 4042  df-id 4268  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-iota 5150  df-fun 5187  df-fv 5193  df-en 6701  df-card 7130
This theorem is referenced by:  oncardval  7136  carden2bex  7139
  Copyright terms: Public domain W3C validator