ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-en Unicode version

Definition df-en 6707
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define  ~~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6713. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en  |-  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Distinct variable group:    x, y, f

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6704 . 2  class  ~~
2 vx . . . . . 6  setvar  x
32cv 1342 . . . . 5  class  x
4 vy . . . . . 6  setvar  y
54cv 1342 . . . . 5  class  y
6 vf . . . . . 6  setvar  f
76cv 1342 . . . . 5  class  f
83, 5, 7wf1o 5187 . . . 4  wff  f : x -1-1-onto-> y
98, 6wex 1480 . . 3  wff  E. f 
f : x -1-1-onto-> y
109, 2, 4copab 4042 . 2  class  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
111, 10wceq 1343 1  wff  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Colors of variables: wff set class
This definition is referenced by:  relen  6710  bren  6713  enssdom  6728
  Copyright terms: Public domain W3C validator