ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-en Unicode version

Definition df-en 6841
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define  ~~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6848. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en  |-  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Distinct variable group:    x, y, f

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6838 . 2  class  ~~
2 vx . . . . . 6  setvar  x
32cv 1372 . . . . 5  class  x
4 vy . . . . . 6  setvar  y
54cv 1372 . . . . 5  class  y
6 vf . . . . . 6  setvar  f
76cv 1372 . . . . 5  class  f
83, 5, 7wf1o 5279 . . . 4  wff  f : x -1-1-onto-> y
98, 6wex 1516 . . 3  wff  E. f 
f : x -1-1-onto-> y
109, 2, 4copab 4112 . 2  class  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
111, 10wceq 1373 1  wff  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Colors of variables: wff set class
This definition is referenced by:  relen  6844  breng  6847  bren  6848  enssdom  6866
  Copyright terms: Public domain W3C validator