Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-en | Unicode version |
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6713. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
df-en |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cen 6704 | . 2 | |
2 | vx | . . . . . 6 | |
3 | 2 | cv 1342 | . . . . 5 |
4 | vy | . . . . . 6 | |
5 | 4 | cv 1342 | . . . . 5 |
6 | vf | . . . . . 6 | |
7 | 6 | cv 1342 | . . . . 5 |
8 | 3, 5, 7 | wf1o 5187 | . . . 4 |
9 | 8, 6 | wex 1480 | . . 3 |
10 | 9, 2, 4 | copab 4042 | . 2 |
11 | 1, 10 | wceq 1343 | 1 |
Colors of variables: wff set class |
This definition is referenced by: relen 6710 bren 6713 enssdom 6728 |
Copyright terms: Public domain | W3C validator |