ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-en Unicode version

Definition df-en 6743
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define  ~~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6749. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en  |-  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Distinct variable group:    x, y, f

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6740 . 2  class  ~~
2 vx . . . . . 6  setvar  x
32cv 1352 . . . . 5  class  x
4 vy . . . . . 6  setvar  y
54cv 1352 . . . . 5  class  y
6 vf . . . . . 6  setvar  f
76cv 1352 . . . . 5  class  f
83, 5, 7wf1o 5217 . . . 4  wff  f : x -1-1-onto-> y
98, 6wex 1492 . . 3  wff  E. f 
f : x -1-1-onto-> y
109, 2, 4copab 4065 . 2  class  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
111, 10wceq 1353 1  wff  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Colors of variables: wff set class
This definition is referenced by:  relen  6746  bren  6749  enssdom  6764
  Copyright terms: Public domain W3C validator