ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-en Unicode version

Definition df-en 6827
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define  ~~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6834. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en  |-  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Distinct variable group:    x, y, f

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6824 . 2  class  ~~
2 vx . . . . . 6  setvar  x
32cv 1371 . . . . 5  class  x
4 vy . . . . . 6  setvar  y
54cv 1371 . . . . 5  class  y
6 vf . . . . . 6  setvar  f
76cv 1371 . . . . 5  class  f
83, 5, 7wf1o 5269 . . . 4  wff  f : x -1-1-onto-> y
98, 6wex 1514 . . 3  wff  E. f 
f : x -1-1-onto-> y
109, 2, 4copab 4103 . 2  class  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
111, 10wceq 1372 1  wff  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Colors of variables: wff set class
This definition is referenced by:  relen  6830  breng  6833  bren  6834  enssdom  6852
  Copyright terms: Public domain W3C validator