ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-en Unicode version

Definition df-en 6886
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define  ~~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6893. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en  |-  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Distinct variable group:    x, y, f

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6883 . 2  class  ~~
2 vx . . . . . 6  setvar  x
32cv 1394 . . . . 5  class  x
4 vy . . . . . 6  setvar  y
54cv 1394 . . . . 5  class  y
6 vf . . . . . 6  setvar  f
76cv 1394 . . . . 5  class  f
83, 5, 7wf1o 5316 . . . 4  wff  f : x -1-1-onto-> y
98, 6wex 1538 . . 3  wff  E. f 
f : x -1-1-onto-> y
109, 2, 4copab 4143 . 2  class  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
111, 10wceq 1395 1  wff  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Colors of variables: wff set class
This definition is referenced by:  relen  6889  breng  6892  bren  6893  enssdom  6911
  Copyright terms: Public domain W3C validator