ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enssdom Unicode version

Theorem enssdom 6728
Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
enssdom  |-  ~~  C_  ~<_

Proof of Theorem enssdom
Dummy variables  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 6710 . 2  |-  Rel  ~~
2 f1of1 5431 . . . . 5  |-  ( f : x -1-1-onto-> y  ->  f : x -1-1-> y )
32eximi 1588 . . . 4  |-  ( E. f  f : x -1-1-onto-> y  ->  E. f  f : x -1-1-> y )
4 opabid 4235 . . . 4  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }  <->  E. f  f :
x
-1-1-onto-> y )
5 opabid 4235 . . . 4  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-> y }  <->  E. f  f : x -1-1-> y )
63, 4, 53imtr4i 200 . . 3  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }  ->  <. x ,  y
>.  e.  { <. x ,  y >.  |  E. f  f : x
-1-1-> y } )
7 df-en 6707 . . . 4  |-  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
87eleq2i 2233 . . 3  |-  ( <.
x ,  y >.  e.  ~~  <->  <. x ,  y
>.  e.  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y } )
9 df-dom 6708 . . . 4  |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x -1-1-> y }
109eleq2i 2233 . . 3  |-  ( <.
x ,  y >.  e. 
~<_ 
<-> 
<. x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-> y } )
116, 8, 103imtr4i 200 . 2  |-  ( <.
x ,  y >.  e.  ~~  ->  <. x ,  y >.  e.  ~<_  )
121, 11relssi 4695 1  |-  ~~  C_  ~<_
Colors of variables: wff set class
Syntax hints:   E.wex 1480    e. wcel 2136    C_ wss 3116   <.cop 3579   {copab 4042   -1-1->wf1 5185   -1-1-onto->wf1o 5187    ~~ cen 6704    ~<_ cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610  df-rel 4611  df-f1o 5195  df-en 6707  df-dom 6708
This theorem is referenced by:  endom  6729
  Copyright terms: Public domain W3C validator