Theorem List for Intuitionistic Logic Explorer - 6701-6800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | ectocld 6701* |
Implicit substitution of class for equivalence class. (Contributed by
Mario Carneiro, 9-Jul-2014.)
|
       ![] ]](rbrack.gif)             |
| |
| Theorem | ectocl 6702* |
Implicit substitution of class for equivalence class. (Contributed by
NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
       ![] ]](rbrack.gif)    
    |
| |
| Theorem | elqsn0m 6703* |
An element of a quotient set is inhabited. (Contributed by Jim Kingdon,
21-Aug-2019.)
|
 
    

  |
| |
| Theorem | elqsn0 6704 |
A quotient set doesn't contain the empty set. (Contributed by NM,
24-Aug-1995.)
|
 
    
  |
| |
| Theorem | ecelqsdm 6705 |
Membership of an equivalence class in a quotient set. (Contributed by
NM, 30-Jul-1995.)
|
 
  ![] ]](rbrack.gif)
       |
| |
| Theorem | xpider 6706 |
A square Cartesian product is an equivalence relation (in general it's not
a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro,
12-Aug-2015.)
|
   |
| |
| Theorem | iinerm 6707* |
The intersection of a nonempty family of equivalence relations is an
equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
|
  
     |
| |
| Theorem | riinerm 6708* |
The relative intersection of a family of equivalence relations is an
equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
|
  
      
  |
| |
| Theorem | erinxp 6709 |
A restricted equivalence relation is an equivalence relation.
(Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
           |
| |
| Theorem | ecinxp 6710 |
Restrict the relation in an equivalence class to a base set. (Contributed
by Mario Carneiro, 10-Jul-2015.)
|
         ![] ]](rbrack.gif)
  ![] ]](rbrack.gif)  
    |
| |
| Theorem | qsinxp 6711 |
Restrict the equivalence relation in a quotient set to the base set.
(Contributed by Mario Carneiro, 23-Feb-2015.)
|
    
       
      |
| |
| Theorem | qsel 6712 |
If an element of a quotient set contains a given element, it is equal to
the equivalence class of the element. (Contributed by Mario Carneiro,
12-Aug-2015.)
|
     
   ![] ]](rbrack.gif)   |
| |
| Theorem | qliftlem 6713* |
, a function lift, is
a subset of . (Contributed by
Mario Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)                 ![] ]](rbrack.gif)
      |
| |
| Theorem | qliftrel 6714* |
, a function lift, is
a subset of . (Contributed by
Mario Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)                 
   |
| |
| Theorem | qliftel 6715* |
Elementhood in the relation . (Contributed by Mario Carneiro,
23-Dec-2016.)
|

   ![] ]](rbrack.gif)                ![] ]](rbrack.gif)      
    |
| |
| Theorem | qliftel1 6716* |
Elementhood in the relation . (Contributed by Mario Carneiro,
23-Dec-2016.)
|

   ![] ]](rbrack.gif)                 ![] ]](rbrack.gif)     |
| |
| Theorem | qliftfun 6717* |
The function is the
unique function defined by
    , provided that the well-definedness condition
holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)              
       
    |
| |
| Theorem | qliftfund 6718* |
The function is the
unique function defined by
    , provided that the well-definedness condition
holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)                  
 
  |
| |
| Theorem | qliftfuns 6719* |
The function is the
unique function defined by
    , provided that the well-definedness condition
holds.
(Contributed by Mario Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)                       ![]_ ]_](_urbrack.gif)   ![]_ ]_](_urbrack.gif)     |
| |
| Theorem | qliftf 6720* |
The domain and codomain of the function . (Contributed by Mario
Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)                         |
| |
| Theorem | qliftval 6721* |
The value of the function . (Contributed by Mario Carneiro,
23-Dec-2016.)
|

   ![] ]](rbrack.gif)              
         ![] ]](rbrack.gif) 
  |
| |
| Theorem | ecoptocl 6722* |
Implicit substitution of class for equivalence class of ordered pair.
(Contributed by NM, 23-Jul-1995.)
|
            ![] ]](rbrack.gif)     
     |
| |
| Theorem | 2ecoptocl 6723* |
Implicit substitution of classes for equivalence classes of ordered
pairs. (Contributed by NM, 23-Jul-1995.)
|
            ![] ]](rbrack.gif)          ![] ]](rbrack.gif)        
 
      |
| |
| Theorem | 3ecoptocl 6724* |
Implicit substitution of classes for equivalence classes of ordered
pairs. (Contributed by NM, 9-Aug-1995.)
|
            ![] ]](rbrack.gif)          ![] ]](rbrack.gif)          ![] ]](rbrack.gif)        
 
 
  
   |
| |
| Theorem | brecop 6725* |
Binary relation on a quotient set. Lemma for real number construction.
(Contributed by NM, 29-Jan-1996.)
|
           
               
             
 
 
                                   
 
              |
| |
| Theorem | eroveu 6726* |
Lemma for eroprf 6728. (Contributed by Jeff Madsen, 10-Jun-2010.)
(Revised by Mario Carneiro, 9-Jul-2014.)
|
                                
            
         
 
  

    ![] ]](rbrack.gif)
  ![] ]](rbrack.gif)      ![] ]](rbrack.gif)    |
| |
| Theorem | erovlem 6727* |
Lemma for eroprf 6728. (Contributed by Jeff Madsen, 10-Jun-2010.)
(Revised by Mario Carneiro, 30-Dec-2014.)
|
                                
            
               
    ![] ]](rbrack.gif)
  ![] ]](rbrack.gif)      ![] ]](rbrack.gif)     
         ![] ]](rbrack.gif)   ![] ]](rbrack.gif)      ![] ]](rbrack.gif)      |
| |
| Theorem | eroprf 6728* |
Functionality of an operation defined on equivalence classes.
(Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
                                
            
               
    ![] ]](rbrack.gif)
  ![] ]](rbrack.gif)      ![] ]](rbrack.gif)                   |
| |
| Theorem | eroprf2 6729* |
Functionality of an operation defined on equivalence classes.
(Contributed by Jeff Madsen, 10-Jun-2010.)
|
 
      
       
                       
    
  
    
       |
| |
| Theorem | ecopoveq 6730* |
This is the first of several theorems about equivalence relations of
the kind used in construction of fractions and signed reals, involving
operations on equivalent classes of ordered pairs. This theorem
expresses the relation (specified by the hypothesis) in terms
of its operation . (Contributed by NM, 16-Aug-1995.)
|
       
               
     
         
 
        
     |
| |
| Theorem | ecopovsym 6731* |
Assuming the operation is commutative, show that the relation
,
specified by the first hypothesis, is symmetric.
(Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
       
               
     
      

    |
| |
| Theorem | ecopovtrn 6732* |
Assuming that operation is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
,
specified by the first hypothesis, is transitive.
(Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
       
               
     
      

  
  
   
  
         
       |
| |
| Theorem | ecopover 6733* |
Assuming that operation is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
,
specified by the first hypothesis, is an equivalence
relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
       
               
     
      

  
  
   
  
         
 
   |
| |
| Theorem | ecopovsymg 6734* |
Assuming the operation is commutative, show that the relation
,
specified by the first hypothesis, is symmetric.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
       
               
     
                |
| |
| Theorem | ecopovtrng 6735* |
Assuming that operation is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
,
specified by the first hypothesis, is transitive.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
       
               
     
                        
  
          
       |
| |
| Theorem | ecopoverg 6736* |
Assuming that operation is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
,
specified by the first hypothesis, is an equivalence
relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
|
       
               
     
                        
  
          
 
   |
| |
| Theorem | th3qlem1 6737* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The
third hypothesis is the compatibility assumption. (Contributed by NM,
3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
  
 
 
   
          
            
      |
| |
| Theorem | th3qlem2 6738* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60,
extended to operations on ordered pairs. The fourth hypothesis is the
compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by
Mario Carneiro, 12-Aug-2015.)
|
       
 
 
 
       
  
  
               
                                 
    
            |
| |
| Theorem | th3qcor 6739* |
Corollary of Theorem 3Q of [Enderton] p. 60.
(Contributed by NM,
12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
       
 
 
 
       
  
  
               
     
                                
    
             |
| |
| Theorem | th3q 6740* |
Theorem 3Q of [Enderton] p. 60, extended to
operations on ordered
pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro,
19-Dec-2013.)
|
       
 
 
 
       
  
  
               
     
                                
    
                
 
           
           |
| |
| Theorem | oviec 6741* |
Express an operation on equivalence classes of ordered pairs in terms of
equivalence class of operations on ordered pairs. See iset.mm for
additional comments describing the hypotheses. (Unnecessary distinct
variable restrictions were removed by David Abernethy, 4-Jun-2013.)
(Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro,
4-Jun-2013.)
|
    
 

    
 
 

    
 
 

           
               
           
 
     
                 
               
           
 
   
       
 
 
    
  
 
                    
                     
 
 
 
     
    
   
              |
| |
| Theorem | ecovcom 6742* |
Lemma used to transfer a commutative law via an equivalence relation.
Most uses will want ecovicom 6743 instead. (Contributed by NM,
29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
   
    
 
     
              
 
     
              
    |
| |
| Theorem | ecovicom 6743* |
Lemma used to transfer a commutative law via an equivalence relation.
(Contributed by Jim Kingdon, 15-Sep-2019.)
|
   
    
 
     
              
 
     
              
 
   
 
 
     
    |
| |
| Theorem | ecovass 6744* |
Lemma used to transfer an associative law via an equivalence relation.
In most cases ecoviass 6745 will be more useful. (Contributed by NM,
31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
   
    
 
     
              
 
     
                           
         
 
     
              
 
       
 
    
   
  
    |
| |
| Theorem | ecoviass 6745* |
Lemma used to transfer an associative law via an equivalence relation.
(Contributed by Jim Kingdon, 16-Sep-2019.)
|
   
    
 
     
              
 
     
                           
         
 
     
              
 
       
 
       
 
 
   
 
   
  
   
  
    |
| |
| Theorem | ecovdi 6746* |
Lemma used to transfer a distributive law via an equivalence relation.
Most likely ecovidi 6747 will be more helpful. (Contributed by NM,
2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
   
    
 
     
              
 
                    
 
                    
 
                      
     
              
 
       
 
       
 
    
             |
| |
| Theorem | ecovidi 6747* |
Lemma used to transfer a distributive law via an equivalence relation.
(Contributed by Jim Kingdon, 17-Sep-2019.)
|
   
    
 
     
              
 
                    
 
                    
 
                      
     
              
 
       
 
       
 
       
 
 
   
 
   
  
             |
| |
| 2.6.26 The mapping operation
|
| |
| Syntax | cmap 6748 |
Extend the definition of a class to include the mapping operation. (Read
for , "the set of all functions that map
from to
.)
|
 |
| |
| Syntax | cpm 6749 |
Extend the definition of a class to include the partial mapping operation.
(Read for , "the set of all partial functions
that map from
to .)
|
 |
| |
| Definition | df-map 6750* |
Define the mapping operation or set exponentiation. The set of all
functions that map from to is
written   (see
mapval 6760). Many authors write followed by as a superscript
for this operation and rely on context to avoid confusion other
exponentiation operations (e.g., Definition 10.42 of [TakeutiZaring]
p. 95). Other authors show as a prefixed superscript, which is
read " pre
" (e.g.,
definition of [Enderton] p. 52).
Definition 8.21 of [Eisenberg] p. 125
uses the notation Map( ,
) for our   . The up-arrow is used by
Donald Knuth
for iterated exponentiation (Science 194, 1235-1242, 1976). We
adopt
the first case of his notation (simple exponentiation) and subscript it
with m to distinguish it from other kinds of exponentiation.
(Contributed by NM, 8-Dec-2003.)
|
          |
| |
| Definition | df-pm 6751* |
Define the partial mapping operation. A partial function from to
is a function
from a subset of to
. The set of all
partial functions from to is
written   (see
pmvalg 6759). A notation for this operation apparently
does not appear in
the literature. We use to distinguish it from the less general
set exponentiation operation (df-map 6750) . See mapsspm 6782 for
its relationship to set exponentiation. (Contributed by NM,
15-Nov-2007.)
|
    

   |
| |
| Theorem | mapprc 6752* |
When is a proper
class, the class of all functions mapping
to is empty.
Exercise 4.41 of [Mendelson] p. 255.
(Contributed
by NM, 8-Dec-2003.)
|
         |
| |
| Theorem | pmex 6753* |
The class of all partial functions from one set to another is a set.
(Contributed by NM, 15-Nov-2007.)
|
           |
| |
| Theorem | mapex 6754* |
The class of all functions mapping one set to another is a set. Remark
after Definition 10.24 of [Kunen] p. 31.
(Contributed by Raph Levien,
4-Dec-2003.)
|
           |
| |
| Theorem | fnmap 6755 |
Set exponentiation has a universal domain. (Contributed by NM,
8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
   |
| |
| Theorem | fnpm 6756 |
Partial function exponentiation has a universal domain. (Contributed by
Mario Carneiro, 14-Nov-2013.)
|
   |
| |
| Theorem | reldmmap 6757 |
Set exponentiation is a well-behaved binary operator. (Contributed by
Stefan O'Rear, 27-Feb-2015.)
|
 |
| |
| Theorem | mapvalg 6758* |
The value of set exponentiation.   is the set of all
functions that map from to .
Definition 10.24 of [Kunen]
p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
    
        |
| |
| Theorem | pmvalg 6759* |
The value of the partial mapping operation. 
 is the set
of all partial functions that map from to . (Contributed by
NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
        
   |
| |
| Theorem | mapval 6760* |
The value of set exponentiation (inference version).   is
the set of all functions that map from to . Definition
10.24 of [Kunen] p. 24. (Contributed by
NM, 8-Dec-2003.)
|
 
       |
| |
| Theorem | elmapg 6761 |
Membership relation for set exponentiation. (Contributed by NM,
17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
    
        |
| |
| Theorem | elmapd 6762 |
Deduction form of elmapg 6761. (Contributed by BJ, 11-Apr-2020.)
|
               |
| |
| Theorem | mapdm0 6763 |
The empty set is the only map with empty domain. (Contributed by Glauco
Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux,
3-Dec-2021.)
|
       |
| |
| Theorem | elpmg 6764 |
The predicate "is a partial function". (Contributed by Mario
Carneiro,
14-Nov-2013.)
|
    
 
      |
| |
| Theorem | elpm2g 6765 |
The predicate "is a partial function". (Contributed by NM,
31-Dec-2013.)
|
    
          |
| |
| Theorem | elpm2r 6766 |
Sufficient condition for being a partial function. (Contributed by NM,
31-Dec-2013.)
|
               |
| |
| Theorem | elpmi 6767 |
A partial function is a function. (Contributed by Mario Carneiro,
15-Sep-2015.)
|
       
   |
| |
| Theorem | pmfun 6768 |
A partial function is a function. (Contributed by Mario Carneiro,
30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
     |
| |
| Theorem | elmapex 6769 |
Eliminate antecedent for mapping theorems: domain can be taken to be a
set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
|
   
   |
| |
| Theorem | elmapi 6770 |
A mapping is a function, forward direction only with superfluous
antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
|
         |
| |
| Theorem | elmapfn 6771 |
A mapping is a function with the appropriate domain. (Contributed by AV,
6-Apr-2019.)
|
     |
| |
| Theorem | elmapfun 6772 |
A mapping is always a function. (Contributed by Stefan O'Rear,
9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
|
     |
| |
| Theorem | elmapssres 6773 |
A restricted mapping is a mapping. (Contributed by Stefan O'Rear,
9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
|
  
        |
| |
| Theorem | fpmg 6774 |
A total function is a partial function. (Contributed by Mario Carneiro,
31-Dec-2013.)
|
           |
| |
| Theorem | pmss12g 6775 |
Subset relation for the set of partial functions. (Contributed by Mario
Carneiro, 31-Dec-2013.)
|
    
 
      |
| |
| Theorem | pmresg 6776 |
Elementhood of a restricted function in the set of partial functions.
(Contributed by Mario Carneiro, 31-Dec-2013.)
|
           |
| |
| Theorem | elmap 6777 |
Membership relation for set exponentiation. (Contributed by NM,
8-Dec-2003.)
|
         |
| |
| Theorem | mapval2 6778* |
Alternate expression for the value of set exponentiation. (Contributed
by NM, 3-Nov-2007.)
|
 
  
     |
| |
| Theorem | elpm 6779 |
The predicate "is a partial function". (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
|
   
     |
| |
| Theorem | elpm2 6780 |
The predicate "is a partial function". (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
|
           |
| |
| Theorem | fpm 6781 |
A total function is a partial function. (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
|
         |
| |
| Theorem | mapsspm 6782 |
Set exponentiation is a subset of partial maps. (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
|
     |
| |
| Theorem | pmsspw 6783 |
Partial maps are a subset of the power set of the Cartesian product of
its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
|
      |
| |
| Theorem | mapsspw 6784 |
Set exponentiation is a subset of the power set of the Cartesian product
of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario
Carneiro, 26-Apr-2015.)
|
      |
| |
| Theorem | fvmptmap 6785* |
Special case of fvmpt 5669 for operator theorems. (Contributed by NM,
27-Nov-2007.)
|

             
  |
| |
| Theorem | map0e 6786 |
Set exponentiation with an empty exponent (ordinal number 0) is ordinal
number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM,
10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
     |
| |
| Theorem | map0b 6787 |
Set exponentiation with an empty base is the empty set, provided the
exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by
NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
     |
| |
| Theorem | map0g 6788 |
Set exponentiation is empty iff the base is empty and the exponent is
not empty. Theorem 97 of [Suppes] p. 89.
(Contributed by Mario
Carneiro, 30-Apr-2015.)
|
           |
| |
| Theorem | map0 6789 |
Set exponentiation is empty iff the base is empty and the exponent is
not empty. Theorem 97 of [Suppes] p. 89.
(Contributed by NM,
10-Dec-2003.)
|
  
    |
| |
| Theorem | mapsn 6790* |
The value of set exponentiation with a singleton exponent. Theorem 98
of [Suppes] p. 89. (Contributed by NM,
10-Dec-2003.)
|
             |
| |
| Theorem | mapss 6791 |
Subset inheritance for set exponentiation. Theorem 99 of [Suppes]
p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
    
    |
| |
| Theorem | fdiagfn 6792* |
Functionality of the diagonal map. (Contributed by Stefan O'Rear,
24-Jan-2015.)
|
             
   |
| |
| Theorem | fvdiagfn 6793* |
Functionality of the diagonal map. (Contributed by Stefan O'Rear,
24-Jan-2015.)
|
        
          |
| |
| Theorem | mapsnconst 6794 |
Every singleton map is a constant function. (Contributed by Stefan
O'Rear, 25-Mar-2015.)
|
    
          |
| |
| Theorem | mapsncnv 6795* |
Expression for the inverse of the canonical map between a set and its
set of singleton functions. (Contributed by Stefan O'Rear,
21-Mar-2015.)
|
          
       |
| |
| Theorem | mapsnf1o2 6796* |
Explicit bijection between a set and its singleton functions.
(Contributed by Stefan O'Rear, 21-Mar-2015.)
|
                 |
| |
| Theorem | mapsnf1o3 6797* |
Explicit bijection in the reverse of mapsnf1o2 6796. (Contributed by
Stefan O'Rear, 24-Mar-2015.)
|
               |
| |
| 2.6.27 Infinite Cartesian products
|
| |
| Syntax | cixp 6798 |
Extend class notation to include infinite Cartesian products.
|
  |
| |
| Definition | df-ixp 6799* |
Definition of infinite Cartesian product of [Enderton] p. 54. Enderton
uses a bold "X" with
written underneath or
as a subscript, as
does Stoll p. 47. Some books use a capital pi, but we will reserve that
notation for products of numbers. Usually represents a class
expression containing free and thus can be thought of as
   . Normally,
is not free in ,
although this is
not a requirement of the definition. (Contributed by NM,
28-Sep-2006.)
|

  

    
   |
| |
| Theorem | dfixp 6800* |
Eliminate the expression   in df-ixp 6799, under the
assumption that and are
disjoint. This way, we can say that
is bound in
  even if it
appears free in .
(Contributed by Mario Carneiro, 12-Aug-2016.)
|

      
   |