HomeHome Intuitionistic Logic Explorer
Theorem List (p. 68 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6701-6800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfundmeng 6701 A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
 |-  ( ( F  e.  V  /\  Fun  F )  ->  dom  F  ~~  F )
 
Theoremcnven 6702 A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  ( ( Rel  A  /\  A  e.  V ) 
 ->  A  ~~  `' A )
 
Theoremcnvct 6703 If a set is dominated by  om, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.)
 |-  ( A  ~<_  om  ->  `' A  ~<_  om )
 
Theoremfndmeng 6704 A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )
 
Theoremmapsnen 6705 Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  ^m  { B } )  ~~  A
 
Theoremmap1 6706 Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
 |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )
 
Theoremen2sn 6707 Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A }  ~~  { B } )
 
Theoremsnfig 6708 A singleton is finite. For the proper class case, see snprc 3588. (Contributed by Jim Kingdon, 13-Apr-2020.)
 |-  ( A  e.  V  ->  { A }  e.  Fin )
 
Theoremfiprc 6709 The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
 |- 
 Fin  e/  _V
 
Theoremunen 6710 Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( ( A 
 ~~  B  /\  C  ~~  D )  /\  (
 ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D ) )
 
Theoremenpr2d 6711 A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  -.  A  =  B )   =>    |-  ( ph  ->  { A ,  B }  ~~  2o )
 
Theoremssct 6712 A subset of a set dominated by 
om is dominated by 
om. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  ( ( A  C_  B  /\  B  ~<_  om )  ->  A  ~<_  om )
 
Theorem1domsn 6713 A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.)
 |- 
 { A }  ~<_  1o
 
Theoremenm 6714* A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
 |-  ( ( A  ~~  B  /\  E. x  x  e.  A )  ->  E. y  y  e.  B )
 
Theoremxpsnen 6715 A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  X.  { B } )  ~~  A
 
Theoremxpsneng 6716 A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  { B } )  ~~  A )
 
Theoremxp1en 6717 One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  V  ->  ( A  X.  1o )  ~~  A )
 
Theoremendisj 6718* Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 E. x E. y
 ( ( x  ~~  A  /\  y  ~~  B )  /\  ( x  i^i  y )  =  (/) )
 
Theoremxpcomf1o 6719* The canonical bijection from  ( A  X.  B
) to  ( B  X.  A ). (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  F  =  ( x  e.  ( A  X.  B )  |->  U. `' { x } )   =>    |-  F : ( A  X.  B ) -1-1-onto-> ( B  X.  A )
 
Theoremxpcomco 6720* Composition with the bijection of xpcomf1o 6719 swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015.)
 |-  F  =  ( x  e.  ( A  X.  B )  |->  U. `' { x } )   &    |-  G  =  ( y  e.  B ,  z  e.  A  |->  C )   =>    |-  ( G  o.  F )  =  ( z  e.  A ,  y  e.  B  |->  C )
 
Theoremxpcomen 6721 Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  X.  B )  ~~  ( B  X.  A )
 
Theoremxpcomeng 6722 Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B )  ~~  ( B  X.  A ) )
 
Theoremxpsnen2g 6723 A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B )
 
Theoremxpassen 6724 Associative law for equinumerosity of Cartesian product. Proposition 4.22(e) of [Mendelson] p. 254. (Contributed by NM, 22-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  (
 ( A  X.  B )  X.  C )  ~~  ( A  X.  ( B  X.  C ) )
 
Theoremxpdom2 6725 Dominance law for Cartesian product. Proposition 10.33(2) of [TakeutiZaring] p. 92. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  C  e.  _V   =>    |-  ( A  ~<_  B  ->  ( C  X.  A )  ~<_  ( C  X.  B ) )
 
Theoremxpdom2g 6726 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( C  e.  V  /\  A  ~<_  B ) 
 ->  ( C  X.  A ) 
 ~<_  ( C  X.  B ) )
 
Theoremxpdom1g 6727 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( C  e.  V  /\  A  ~<_  B ) 
 ->  ( A  X.  C ) 
 ~<_  ( B  X.  C ) )
 
Theoremxpdom3m 6728* A set is dominated by its Cartesian product with an inhabited set. Exercise 6 of [Suppes] p. 98. (Contributed by Jim Kingdon, 15-Apr-2020.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  E. x  x  e.  B )  ->  A  ~<_  ( A  X.  B ) )
 
Theoremxpdom1 6729 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by NM, 29-Mar-2006.) (Revised by Mario Carneiro, 7-May-2015.)
 |-  C  e.  _V   =>    |-  ( A  ~<_  B  ->  ( A  X.  C )  ~<_  ( B  X.  C ) )
 
Theoremfopwdom 6730 Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( F  e.  _V 
 /\  F : A -onto-> B )  ->  ~P B  ~<_  ~P A )
 
Theorem0domg 6731 Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  V  -> 
 (/)  ~<_  A )
 
Theoremdom0 6732 A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.)
 |-  ( A  ~<_  (/)  <->  A  =  (/) )
 
Theorem0dom 6733 Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   =>    |-  (/)  ~<_  A
 
Theoremenen1 6734 Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.)
 |-  ( A  ~~  B  ->  ( A  ~~  C  <->  B 
 ~~  C ) )
 
Theoremenen2 6735 Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.)
 |-  ( A  ~~  B  ->  ( C  ~~  A  <->  C 
 ~~  B ) )
 
Theoremdomen1 6736 Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
 |-  ( A  ~~  B  ->  ( A  ~<_  C  <->  B  ~<_  C )
 )
 
Theoremdomen2 6737 Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
 |-  ( A  ~~  B  ->  ( C  ~<_  A  <->  C  ~<_  B )
 )
 
2.6.28  Equinumerosity (cont.)
 
Theoremxpf1o 6738* Construct a bijection on a Cartesian product given bijections on the factors. (Contributed by Mario Carneiro, 30-May-2015.)
 |-  ( ph  ->  ( x  e.  A  |->  X ) : A -1-1-onto-> B )   &    |-  ( ph  ->  ( y  e.  C  |->  Y ) : C -1-1-onto-> D )   =>    |-  ( ph  ->  ( x  e.  A ,  y  e.  C  |->  <. X ,  Y >. ) : ( A  X.  C ) -1-1-onto-> ( B  X.  D ) )
 
Theoremxpen 6739 Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.)
 |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  ( A  X.  C )  ~~  ( B  X.  D ) )
 
Theoremmapen 6740 Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  ( A  ^m  C )  ~~  ( B 
 ^m  D ) )
 
Theoremmapdom1g 6741 Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.)
 |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( A  ^m  C ) 
 ~<_  ( B  ^m  C ) )
 
Theoremmapxpen 6742 Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( ( A  ^m  B )  ^m  C ) 
 ~~  ( A  ^m  ( B  X.  C ) ) )
 
Theoremxpmapenlem 6743* Lemma for xpmapen 6744. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  =  ( z  e.  C  |->  ( 1st `  ( x `  z ) ) )   &    |-  R  =  ( z  e.  C  |->  ( 2nd `  ( x `  z ) ) )   &    |-  S  =  ( z  e.  C  |->  <.
 ( ( 1st `  y
 ) `  z ) ,  ( ( 2nd `  y
 ) `  z ) >. )   =>    |-  ( ( A  X.  B )  ^m  C ) 
 ~~  ( ( A 
 ^m  C )  X.  ( B  ^m  C ) )
 
Theoremxpmapen 6744 Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  (
 ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )
 
Theoremssenen 6745* Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
 |-  ( A  ~~  B  ->  { x  |  ( x  C_  A  /\  x  ~~  C ) }  ~~  { x  |  ( x  C_  B  /\  x  ~~  C ) }
 )
 
2.6.29  Pigeonhole Principle
 
Theoremphplem1 6746 Lemma for Pigeonhole Principle. If we join a natural number to itself minus an element, we end up with its successor minus the same element. (Contributed by NM, 25-May-1998.)
 |-  ( ( A  e.  om 
 /\  B  e.  A )  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc  A  \  { B } )
 )
 
Theoremphplem2 6747 Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( A  e.  om 
 /\  B  e.  A )  ->  A  ~~  ( suc  A  \  { B } ) )
 
Theoremphplem3 6748 Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. For a version without the redundant hypotheses, see phplem3g 6750. (Contributed by NM, 26-May-1998.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( A  e.  om 
 /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )
 
Theoremphplem4 6749 Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( suc  A  ~~ 
 suc  B  ->  A  ~~  B ) )
 
Theoremphplem3g 6750 A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6748 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )
 
Theoremnneneq 6751 Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  ~~  B 
 <->  A  =  B ) )
 
Theoremphp5 6752 A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.)
 |-  ( A  e.  om  ->  -.  A  ~~  suc  A )
 
Theoremsnnen2og 6753 A singleton  { A } is never equinumerous with the ordinal number 2. If  A is a proper class, see snnen2oprc 6754. (Contributed by Jim Kingdon, 1-Sep-2021.)
 |-  ( A  e.  V  ->  -.  { A }  ~~  2o )
 
Theoremsnnen2oprc 6754 A singleton  { A } is never equinumerous with the ordinal number 2. If  A is a set, see snnen2og 6753. (Contributed by Jim Kingdon, 1-Sep-2021.)
 |-  ( -.  A  e.  _V 
 ->  -.  { A }  ~~  2o )
 
Theorem1nen2 6755 One and two are not equinumerous. (Contributed by Jim Kingdon, 25-Jan-2022.)
 |- 
 -.  1o  ~~  2o
 
Theoremphplem4dom 6756 Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( suc  A  ~<_  suc  B  ->  A  ~<_  B ) )
 
Theoremphp5dom 6757 A natural number does not dominate its successor. (Contributed by Jim Kingdon, 1-Sep-2021.)
 |-  ( A  e.  om  ->  -.  suc  A  ~<_  A )
 
Theoremnndomo 6758 Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  ~<_  B  <->  A  C_  B ) )
 
Theoremphpm 6759* Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. By "proper subset" here we mean that there is an element which is in the natural number and not in the subset, or in symbols  E. x x  e.  ( A  \  B
) (which is stronger than not being equal in the absence of excluded middle). Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 6746 through phplem4 6749, nneneq 6751, and this final piece of the proof. (Contributed by NM, 29-May-1998.)
 |-  ( ( A  e.  om 
 /\  B  C_  A  /\  E. x  x  e.  ( A  \  B ) )  ->  -.  A  ~~  B )
 
Theoremphpelm 6760 Pigeonhole Principle. A natural number is not equinumerous to an element of itself. (Contributed by Jim Kingdon, 6-Sep-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  A )  ->  -.  A  ~~  B )
 
Theoremphplem4on 6761 Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.)
 |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( suc  A  ~~ 
 suc  B  ->  A  ~~  B ) )
 
2.6.30  Finite sets
 
Theoremfict 6762 A finite set is dominated by  om. Also see finct 7001. (Contributed by Thierry Arnoux, 27-Mar-2018.)
 |-  ( A  e.  Fin  ->  A 
 ~<_  om )
 
Theoremfidceq 6763 Equality of members of a finite set is decidable. This may be counterintuitive: cannot any two sets be elements of a finite set? Well, to show, for example, that  { B ,  C } is finite would require showing it is equinumerous to  1o or to  2o but to show that you'd need to know  B  =  C or  -.  B  =  C, respectively. (Contributed by Jim Kingdon, 5-Sep-2021.)
 |-  ( ( A  e.  Fin  /\  B  e.  A  /\  C  e.  A )  -> DECID  B  =  C )
 
Theoremfidifsnen 6764 All decrements of a finite set are equinumerous. (Contributed by Jim Kingdon, 9-Sep-2021.)
 |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { B }
 ) )
 
Theoremfidifsnid 6765 If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3666 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.)
 |-  ( ( A  e.  Fin  /\  B  e.  A ) 
 ->  ( ( A  \  { B } )  u. 
 { B } )  =  A )
 
Theoremnnfi 6766 Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  ( A  e.  om  ->  A  e.  Fin )
 
Theoremenfi 6767 Equinumerous sets have the same finiteness. (Contributed by NM, 22-Aug-2008.)
 |-  ( A  ~~  B  ->  ( A  e.  Fin  <->  B  e.  Fin ) )
 
Theoremenfii 6768 A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( ( B  e.  Fin  /\  A  ~~  B ) 
 ->  A  e.  Fin )
 
Theoremssfilem 6769* Lemma for ssfiexmid 6770. (Contributed by Jim Kingdon, 3-Feb-2022.)
 |- 
 { z  e.  { (/)
 }  |  ph }  e.  Fin   =>    |-  ( ph  \/  -.  ph )
 
Theoremssfiexmid 6770* If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.)
 |- 
 A. x A. y
 ( ( x  e. 
 Fin  /\  y  C_  x )  ->  y  e.  Fin )   =>    |-  ( ph  \/  -.  ph )
 
Theoreminfiexmid 6771* If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
 |-  ( x  e.  Fin  ->  ( x  i^i  y )  e.  Fin )   =>    |-  ( ph  \/  -.  ph )
 
Theoremdomfiexmid 6772* If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
 |-  ( ( x  e. 
 Fin  /\  y  ~<_  x ) 
 ->  y  e.  Fin )   =>    |-  ( ph  \/  -.  ph )
 
Theoremdif1en 6773 If a set  A is equinumerous to the successor of a natural number  M, then  A with an element removed is equinumerous to  M. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
 |-  ( ( M  e.  om 
 /\  A  ~~  suc  M 
 /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M )
 
Theoremdif1enen 6774 Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A 
 ~~  B )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  D  e.  B )   =>    |-  ( ph  ->  ( A  \  { C }
 )  ~~  ( B  \  { D } )
 )
 
Theoremfiunsnnn 6775 Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.)
 |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  /\  ( N  e.  om  /\  A  ~~  N ) )  ->  ( A  u.  { B } )  ~~  suc  N )
 
Theoremphp5fin 6776 A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.)
 |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  -.  A  ~~  ( A  u.  { B }
 ) )
 
Theoremfisbth 6777 Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.)
 |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B )
 
Theorem0fin 6778 The empty set is finite. (Contributed by FL, 14-Jul-2008.)
 |-  (/)  e.  Fin
 
Theoremfin0 6779* A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
 |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
 
Theoremfin0or 6780* A finite set is either empty or inhabited. (Contributed by Jim Kingdon, 30-Sep-2021.)
 |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  E. x  x  e.  A ) )
 
Theoremdiffitest 6781* If subtracting any set from a finite set gives a finite set, any proposition of the form  -.  ph is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove  A  e.  Fin  ->  ( A  \  B
)  e.  Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
 |- 
 A. a  e.  Fin  A. b ( a  \  b )  e.  Fin   =>    |-  ( -.  ph  \/  -.  -.  ph )
 
Theoremfindcard 6782* Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( x  =  (/)  ->  ( ph  <->  ps ) )   &    |-  ( x  =  ( y  \  { z } )  ->  ( ph  <->  ch ) )   &    |-  ( x  =  y  ->  (
 ph 
 <-> 
 th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  Fin  ->  (
 A. z  e.  y  ch  ->  th ) )   =>    |-  ( A  e.  Fin 
 ->  ta )
 
Theoremfindcard2 6783* Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.)
 |-  ( x  =  (/)  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  u.  { z } )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  Fin  ->  ( ch  ->  th )
 )   =>    |-  ( A  e.  Fin  ->  ta )
 
Theoremfindcard2s 6784* Variation of findcard2 6783 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.)
 |-  ( x  =  (/)  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  u.  { z } )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 ( y  e.  Fin  /\ 
 -.  z  e.  y
 )  ->  ( ch  ->  th ) )   =>    |-  ( A  e.  Fin 
 ->  ta )
 
Theoremfindcard2d 6785* Deduction version of findcard2 6783. If you also need  y  e.  Fin (which doesn't come for free due to ssfiexmid 6770), use findcard2sd 6786 instead. (Contributed by SO, 16-Jul-2018.)
 |-  ( x  =  (/)  ->  ( ps  <->  ch ) )   &    |-  ( x  =  y  ->  ( ps  <->  th ) )   &    |-  ( x  =  ( y  u.  { z } )  ->  ( ps  <->  ta ) )   &    |-  ( x  =  A  ->  ( ps  <->  et ) )   &    |-  ( ph  ->  ch )   &    |-  ( ( ph  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( th  ->  ta ) )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  ->  et )
 
Theoremfindcard2sd 6786* Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.)
 |-  ( x  =  (/)  ->  ( ps  <->  ch ) )   &    |-  ( x  =  y  ->  ( ps  <->  th ) )   &    |-  ( x  =  ( y  u.  { z } )  ->  ( ps  <->  ta ) )   &    |-  ( x  =  A  ->  ( ps  <->  et ) )   &    |-  ( ph  ->  ch )   &    |-  ( ( (
 ph  /\  y  e.  Fin )  /\  ( y 
 C_  A  /\  z  e.  ( A  \  y
 ) ) )  ->  ( th  ->  ta )
 )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  ->  et )
 
Theoremdiffisn 6787 Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
 |-  ( ( A  e.  Fin  /\  B  e.  A ) 
 ->  ( A  \  { B } )  e.  Fin )
 
Theoremdiffifi 6788 Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e.  Fin )
 
Theoreminfnfi 6789 An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.)
 |-  ( om  ~<_  A  ->  -.  A  e.  Fin )
 
Theoremominf 6790 The set of natural numbers is not finite. Although we supply this theorem because we can, the more natural way to express " om is infinite" is  om  ~<_  om which is an instance of domrefg 6661. (Contributed by NM, 2-Jun-1998.)
 |- 
 -.  om  e.  Fin
 
Theoremisinfinf 6791* An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.)
 |-  ( om  ~<_  A  ->  A. n  e.  om  E. x ( x  C_  A  /\  x  ~~  n ) )
 
Theoremac6sfi 6792* Existence of a choice function for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
 |-  ( y  =  ( f `  x ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
 
Theoremtridc 6793* A trichotomous order is decidable. (Contributed by Jim Kingdon, 5-Sep-2022.)
 |-  ( ph  ->  R  Po  A )   &    |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  C  e.  A )   =>    |-  ( ph  -> DECID  B R C )
 
Theoremfimax2gtrilemstep 6794* Lemma for fimax2gtri 6795. The induction step. (Contributed by Jim Kingdon, 5-Sep-2022.)
 |-  ( ph  ->  R  Po  A )   &    |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  =/= 
 (/) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ph  ->  U  C_  A )   &    |-  ( ph  ->  Z  e.  A )   &    |-  ( ph  ->  V  e.  A )   &    |-  ( ph  ->  -.  V  e.  U )   &    |-  ( ph  ->  A. y  e.  U  -.  Z R y )   =>    |-  ( ph  ->  E. x  e.  A  A. y  e.  ( U  u.  { V } )  -.  x R y )
 
Theoremfimax2gtri 6795* A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
 |-  ( ph  ->  R  Po  A )   &    |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  =/= 
 (/) )   =>    |-  ( ph  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
 
Theoremfinexdc 6796* Decidability of existence, over a finite set and defined by a decidable proposition. (Contributed by Jim Kingdon, 12-Jul-2022.)
 |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  E. x  e.  A  ph )
 
Theoremdfrex2fin 6797* Relationship between universal and existential quantifiers over a finite set. Remark in Section 2.2.1 of [Pierik], p. 8. Although Pierik does not mention the decidability condition explicitly, it does say "only finitely many x to check" which means there must be some way of checking each value of x. (Contributed by Jim Kingdon, 11-Jul-2022.)
 |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  ->  ( E. x  e.  A  ph  <->  -.  A. x  e.  A  -.  ph )
 )
 
Theoreminfm 6798* An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
 |-  ( om  ~<_  A  ->  E. x  x  e.  A )
 
Theoreminfn0 6799 An infinite set is not empty. (Contributed by NM, 23-Oct-2004.)
 |-  ( om  ~<_  A  ->  A  =/=  (/) )
 
Theoreminffiexmid 6800* If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.)
 |-  ( x  e.  Fin  \/ 
 om  ~<_  x )   =>    |-  ( ph  \/  -.  ph )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >