HomeHome Intuitionistic Logic Explorer
Theorem List (p. 68 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6701-6800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremixpin 6701* The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
 |-  X_ x  e.  A  ( B  i^i  C )  =  ( X_ x  e.  A  B  i^i  X_ x  e.  A  C )
 
Theoremixpiinm 6702* The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
 |-  ( E. z  z  e.  B  ->  X_ x  e.  A  |^|_ y  e.  B  C  =  |^|_ y  e.  B  X_ x  e.  A  C )
 
Theoremixpintm 6703* The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
 |-  ( E. z  z  e.  B  ->  X_ x  e.  A  |^| B  =  |^|_ y  e.  B  X_ x  e.  A  y )
 
Theoremixp0x 6704 An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.)
 |-  X_ x  e.  (/)  A  =  { (/) }
 
Theoremixpssmap2g 6705* An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 6706 avoids ax-coll 4104. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |-  ( U_ x  e.  A  B  e.  V  -> 
 X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
 
Theoremixpssmapg 6706* An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.)
 |-  ( A. x  e.  A  B  e.  V  -> 
 X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
 
Theorem0elixp 6707 Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.)
 |-  (/)  e.  X_ x  e.  (/)  A
 
Theoremixpm 6708* If an infinite Cartesian product of a family  B ( x ) is inhabited, every  B ( x ) is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
 |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A. x  e.  A  E. z  z  e.  B )
 
Theoremixp0 6709 The infinite Cartesian product of a family  B ( x ) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
 |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )
 
Theoremixpssmap 6710* An infinite Cartesian product is a subset of set exponentiation. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
 |-  B  e.  _V   =>    |-  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A )
 
Theoremresixp 6711* Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.)
 |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  ( F  |`  B )  e.  X_ x  e.  B  C )
 
Theoremmptelixpg 6712* Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
 |-  ( I  e.  V  ->  ( ( x  e.  I  |->  J )  e.  X_ x  e.  I  K 
 <-> 
 A. x  e.  I  J  e.  K )
 )
 
Theoremelixpsn 6713* Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  ( A  e.  V  ->  ( F  e.  X_ x  e.  { A } B  <->  E. y  e.  B  F  =  { <. A ,  y >. } ) )
 
Theoremixpsnf1o 6714* A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )   =>    |-  ( I  e.  V  ->  F : A
 -1-1-onto-> X_ y  e.  { I } A )
 
Theoremmapsnf1o 6715* A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )   =>    |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> ( A  ^m  { I } ) )
 
2.6.28  Equinumerosity
 
Syntaxcen 6716 Extend class definition to include the equinumerosity relation ("approximately equals" symbol)
 class  ~~
 
Syntaxcdom 6717 Extend class definition to include the dominance relation (curly less-than-or-equal)
 class  ~<_
 
Syntaxcfn 6718 Extend class definition to include the class of all finite sets.
 class  Fin
 
Definitiondf-en 6719* Define the equinumerosity relation. Definition of [Enderton] p. 129. We define  ~~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6725. (Contributed by NM, 28-Mar-1998.)
 |- 
 ~~  =  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
 
Definitiondf-dom 6720* Define the dominance relation. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 6728 and domen 6729. (Contributed by NM, 28-Mar-1998.)
 |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x -1-1-> y }
 
Definitiondf-fin 6721* Define the (proper) class of all finite sets. Similar to Definition 10.29 of [TakeutiZaring] p. 91, whose "Fin(a)" corresponds to our " a  e.  Fin". This definition is meaningful whether or not we accept the Axiom of Infinity ax-inf2 14011. (Contributed by NM, 22-Aug-2008.)
 |- 
 Fin  =  { x  |  E. y  e.  om  x  ~~  y }
 
Theoremrelen 6722 Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.)
 |- 
 Rel  ~~
 
Theoremreldom 6723 Dominance is a relation. (Contributed by NM, 28-Mar-1998.)
 |- 
 Rel  ~<_
 
Theoremencv 6724 If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.)
 |-  ( A  ~~  B  ->  ( A  e.  _V  /\  B  e.  _V )
 )
 
Theorembren 6725* Equinumerosity relation. (Contributed by NM, 15-Jun-1998.)
 |-  ( A  ~~  B  <->  E. f  f : A -1-1-onto-> B )
 
Theorembrdomg 6726* Dominance relation. (Contributed by NM, 15-Jun-1998.)
 |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. f  f : A -1-1-> B ) )
 
Theorembrdomi 6727* Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  ~<_  B  ->  E. f  f : A -1-1-> B )
 
Theorembrdom 6728* Dominance relation. (Contributed by NM, 15-Jun-1998.)
 |-  B  e.  _V   =>    |-  ( A  ~<_  B  <->  E. f  f : A -1-1-> B )
 
Theoremdomen 6729* Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
 |-  B  e.  _V   =>    |-  ( A  ~<_  B  <->  E. x ( A 
 ~~  x  /\  x  C_  B ) )
 
Theoremdomeng 6730* Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
 |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x ( A 
 ~~  x  /\  x  C_  B ) ) )
 
Theoremctex 6731 A class dominated by  om is a set. See also ctfoex 7095 which says that a countable class is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.)
 |-  ( A  ~<_  om  ->  A  e.  _V )
 
Theoremf1oen3g 6732 The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 6735 does not require the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.)
 |-  ( ( F  e.  V  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
 
Theoremf1oen2g 6733 The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 6735 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
 
Theoremf1dom2g 6734 The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 6736 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  A  ~<_  B )
 
Theoremf1oeng 6735 The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
 |-  ( ( A  e.  C  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
 
Theoremf1domg 6736 The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
 |-  ( B  e.  C  ->  ( F : A -1-1-> B 
 ->  A  ~<_  B ) )
 
Theoremf1oen 6737 The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
 |-  A  e.  _V   =>    |-  ( F : A
 -1-1-onto-> B  ->  A  ~~  B )
 
Theoremf1dom 6738 The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 19-Jun-1998.)
 |-  B  e.  _V   =>    |-  ( F : A -1-1-> B  ->  A  ~<_  B )
 
Theoremisfi 6739* Express " A is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
 |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x )
 
Theoremenssdom 6740 Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
 |- 
 ~~  C_  ~<_
 
Theoremendom 6741 Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.)
 |-  ( A  ~~  B  ->  A  ~<_  B )
 
Theoremenrefg 6742 Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  V  ->  A  ~~  A )
 
Theoremenref 6743 Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
 |-  A  e.  _V   =>    |-  A  ~~  A
 
Theoremeqeng 6744 Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.)
 |-  ( A  e.  V  ->  ( A  =  B  ->  A  ~~  B ) )
 
Theoremdomrefg 6745 Dominance is reflexive. (Contributed by NM, 18-Jun-1998.)
 |-  ( A  e.  V  ->  A  ~<_  A )
 
Theoremen2d 6746* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  ( x  e.  A  ->  C  e.  _V ) )   &    |-  ( ph  ->  ( y  e.  B  ->  D  e.  _V ) )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D )
 ) )   =>    |-  ( ph  ->  A  ~~  B )
 
Theoremen3d 6747* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )   &    |-  ( ph  ->  ( y  e.  B  ->  D  e.  A ) )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  =  D  <->  y  =  C ) ) )   =>    |-  ( ph  ->  A 
 ~~  B )
 
Theoremen2i 6748* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  e.  A  ->  C  e.  _V )   &    |-  ( y  e.  B  ->  D  e.  _V )   &    |-  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) )   =>    |-  A  ~~  B
 
Theoremen3i 6749* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  e.  A  ->  C  e.  B )   &    |-  ( y  e.  B  ->  D  e.  A )   &    |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  =  D  <->  y  =  C ) )   =>    |-  A  ~~  B
 
Theoremdom2lem 6750* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.)
 |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )   =>    |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-> B )
 
Theoremdom2d 6751* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.)
 |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )   =>    |-  ( ph  ->  ( B  e.  R  ->  A  ~<_  B ) )
 
Theoremdom3d 6752* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
 |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  A  ~<_  B )
 
Theoremdom2 6753* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain.  C and  D can be read  C ( x ) and  D ( y ), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
 |-  ( x  e.  A  ->  C  e.  B )   &    |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y
 ) )   =>    |-  ( B  e.  V  ->  A  ~<_  B )
 
Theoremdom3 6754* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain.  C and  D can be read  C ( x ) and  D ( y ), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.)
 |-  ( x  e.  A  ->  C  e.  B )   &    |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y
 ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  B )
 
Theoremidssen 6755 Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |- 
 _I  C_  ~~
 
Theoremssdomg 6756 A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |-  ( B  e.  V  ->  ( A  C_  B  ->  A  ~<_  B ) )
 
Theoremener 6757 Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |- 
 ~~  Er  _V
 
Theoremensymb 6758 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  ~~  B  <->  B 
 ~~  A )
 
Theoremensym 6759 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  ~~  B  ->  B  ~~  A )
 
Theoremensymi 6760 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
 |-  A  ~~  B   =>    |-  B  ~~  A
 
Theoremensymd 6761 Symmetry of equinumerosity. Deduction form of ensym 6759. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  ~~  B )   =>    |-  ( ph  ->  B  ~~  A )
 
Theorementr 6762 Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.)
 |-  ( ( A  ~~  B  /\  B  ~~  C )  ->  A  ~~  C )
 
Theoremdomtr 6763 Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  ~<_  B  /\  B 
 ~<_  C )  ->  A  ~<_  C )
 
Theorementri 6764 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
 |-  A  ~~  B   &    |-  B  ~~  C   =>    |-  A  ~~  C
 
Theorementr2i 6765 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
 |-  A  ~~  B   &    |-  B  ~~  C   =>    |-  C  ~~  A
 
Theorementr3i 6766 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
 |-  A  ~~  B   &    |-  A  ~~  C   =>    |-  B  ~~  C
 
Theorementr4i 6767 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
 |-  A  ~~  B   &    |-  C  ~~  B   =>    |-  A  ~~  C
 
Theoremendomtr 6768 Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.)
 |-  ( ( A  ~~  B  /\  B  ~<_  C ) 
 ->  A  ~<_  C )
 
Theoremdomentr 6769 Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.)
 |-  ( ( A  ~<_  B  /\  B  ~~  C )  ->  A 
 ~<_  C )
 
Theoremf1imaeng 6770 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
 |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  ( F " C )  ~~  C )
 
Theoremf1imaen2g 6771 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6772 does not need ax-setind 4521.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
 |-  ( ( ( F : A -1-1-> B  /\  B  e.  V )  /\  ( C  C_  A  /\  C  e.  V ) )  ->  ( F " C )  ~~  C )
 
Theoremf1imaen 6772 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.)
 |-  C  e.  _V   =>    |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F " C ) 
 ~~  C )
 
Theoremen0 6773 The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.)
 |-  ( A  ~~  (/)  <->  A  =  (/) )
 
Theoremensn1 6774 A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
 |-  A  e.  _V   =>    |-  { A }  ~~  1o
 
Theoremensn1g 6775 A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
 |-  ( A  e.  V  ->  { A }  ~~  1o )
 
Theoremenpr1g 6776  { A ,  A } has only one element. (Contributed by FL, 15-Feb-2010.)
 |-  ( A  e.  V  ->  { A ,  A }  ~~  1o )
 
Theoremen1 6777* A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
 |-  ( A  ~~  1o  <->  E. x  A  =  { x } )
 
Theoremen1bg 6778 A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.)
 |-  ( A  e.  V  ->  ( A  ~~  1o  <->  A  =  { U. A }
 ) )
 
Theoremreuen1 6779* Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
 |-  ( E! x  e.  A  ph  <->  { x  e.  A  |  ph }  ~~  1o )
 
Theoremeuen1 6780 Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
 |-  ( E! x ph  <->  { x  |  ph }  ~~  1o )
 
Theoremeuen1b 6781* Two ways to express " A has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.)
 |-  ( A  ~~  1o  <->  E! x  x  e.  A )
 
Theoremen1uniel 6782 A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.)
 |-  ( S  ~~  1o  ->  U. S  e.  S )
 
Theorem2dom 6783* A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
 |-  ( 2o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
 
Theoremfundmen 6784 A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  F  e.  _V   =>    |-  ( Fun  F  ->  dom  F  ~~  F )
 
Theoremfundmeng 6785 A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
 |-  ( ( F  e.  V  /\  Fun  F )  ->  dom  F  ~~  F )
 
Theoremcnven 6786 A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  ( ( Rel  A  /\  A  e.  V ) 
 ->  A  ~~  `' A )
 
Theoremcnvct 6787 If a set is dominated by  om, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.)
 |-  ( A  ~<_  om  ->  `' A  ~<_  om )
 
Theoremfndmeng 6788 A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )
 
Theoremmapsnen 6789 Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  ^m  { B } )  ~~  A
 
Theoremmap1 6790 Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
 |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )
 
Theoremen2sn 6791 Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A }  ~~  { B } )
 
Theoremsnfig 6792 A singleton is finite. For the proper class case, see snprc 3648. (Contributed by Jim Kingdon, 13-Apr-2020.)
 |-  ( A  e.  V  ->  { A }  e.  Fin )
 
Theoremfiprc 6793 The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
 |- 
 Fin  e/  _V
 
Theoremunen 6794 Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( ( A 
 ~~  B  /\  C  ~~  D )  /\  (
 ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D ) )
 
Theoremenpr2d 6795 A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  -.  A  =  B )   =>    |-  ( ph  ->  { A ,  B }  ~~  2o )
 
Theoremssct 6796 A subset of a set dominated by 
om is dominated by 
om. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  ( ( A  C_  B  /\  B  ~<_  om )  ->  A  ~<_  om )
 
Theorem1domsn 6797 A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.)
 |- 
 { A }  ~<_  1o
 
Theoremenm 6798* A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
 |-  ( ( A  ~~  B  /\  E. x  x  e.  A )  ->  E. y  y  e.  B )
 
Theoremxpsnen 6799 A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  X.  { B } )  ~~  A
 
Theoremxpsneng 6800 A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  { B } )  ~~  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >