Theorem List for Intuitionistic Logic Explorer - 6701-6800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | erssxp 6701 |
An equivalence relation is a subset of the cartesian product of the field.
(Contributed by Mario Carneiro, 12-Aug-2015.)
|

    |
| |
| Theorem | erex 6702 |
An equivalence relation is a set if its domain is a set. (Contributed by
Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro,
12-Aug-2015.)
|
     |
| |
| Theorem | erexb 6703 |
An equivalence relation is a set if and only if its domain is a set.
(Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro,
12-Aug-2015.)
|
     |
| |
| Theorem | iserd 6704* |
A reflexive, symmetric, transitive relation is an equivalence relation
on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised
by Mario Carneiro, 12-Aug-2015.)
|
           
          
        |
| |
| Theorem | brdifun 6705 |
Evaluate the incomparability relation. (Contributed by Mario Carneiro,
9-Jul-2014.)
|
               |
| |
| Theorem | swoer 6706* |
Incomparability under a strict weak partial order is an equivalence
relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by
Mario Carneiro, 12-Aug-2015.)
|
      
 

   
   

      |
| |
| Theorem | swoord1 6707* |
The incomparability equivalence relation is compatible with the
original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
|
      
 

   
   

            
   |
| |
| Theorem | swoord2 6708* |
The incomparability equivalence relation is compatible with the
original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
|
      
 

   
   

            
   |
| |
| Theorem | eqerlem 6709* |
Lemma for eqer 6710. (Contributed by NM, 17-Mar-2008.) (Proof
shortened
by Mario Carneiro, 6-Dec-2016.)
|
 
        
 ![]_ ]_](_urbrack.gif)   ![]_ ]_](_urbrack.gif)   |
| |
| Theorem | eqer 6710* |
Equivalence relation involving equality of dependent classes   
and    . (Contributed by NM, 17-Mar-2008.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
 
      |
| |
| Theorem | ider 6711 |
The identity relation is an equivalence relation. (Contributed by NM,
10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof
shortened by Mario Carneiro, 9-Jul-2014.)
|
 |
| |
| Theorem | 0er 6712 |
The empty set is an equivalence relation on the empty set. (Contributed
by Mario Carneiro, 5-Sep-2015.)
|
 |
| |
| Theorem | eceq1 6713 |
Equality theorem for equivalence class. (Contributed by NM,
23-Jul-1995.)
|
   ![] ]](rbrack.gif)   ![] ]](rbrack.gif)   |
| |
| Theorem | eceq1d 6714 |
Equality theorem for equivalence class (deduction form). (Contributed
by Jim Kingdon, 31-Dec-2019.)
|
     ![] ]](rbrack.gif)
  ![] ]](rbrack.gif)   |
| |
| Theorem | eceq2 6715 |
Equality theorem for equivalence class. (Contributed by NM,
23-Jul-1995.)
|
   ![] ]](rbrack.gif)   ![] ]](rbrack.gif)   |
| |
| Theorem | eceq2i 6716 |
Equality theorem for the -coset and -coset of ,
inference version. (Contributed by Peter Mazsa, 11-May-2021.)
|
  ![] ]](rbrack.gif)
  ![] ]](rbrack.gif)  |
| |
| Theorem | eceq2d 6717 |
Equality theorem for the -coset and -coset of ,
deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.)
|
     ![] ]](rbrack.gif)
  ![] ]](rbrack.gif)   |
| |
| Theorem | elecg 6718 |
Membership in an equivalence class. Theorem 72 of [Suppes] p. 82.
(Contributed by Mario Carneiro, 9-Jul-2014.)
|
      ![] ]](rbrack.gif)      |
| |
| Theorem | elec 6719 |
Membership in an equivalence class. Theorem 72 of [Suppes] p. 82.
(Contributed by NM, 23-Jul-1995.)
|
   ![] ]](rbrack.gif)     |
| |
| Theorem | relelec 6720 |
Membership in an equivalence class when is a relation. (Contributed
by Mario Carneiro, 11-Sep-2015.)
|
    ![] ]](rbrack.gif)
     |
| |
| Theorem | ecss 6721 |
An equivalence class is a subset of the domain. (Contributed by NM,
6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
|
     ![] ]](rbrack.gif)
  |
| |
| Theorem | ecdmn0m 6722* |
A representative of an inhabited equivalence class belongs to the domain
of the equivalence relation. (Contributed by Jim Kingdon,
21-Aug-2019.)
|
 
  ![] ]](rbrack.gif)   |
| |
| Theorem | ereldm 6723 |
Equality of equivalence classes implies equivalence of domain
membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
     ![] ]](rbrack.gif)   ![] ]](rbrack.gif)  

   |
| |
| Theorem | erth 6724 |
Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82.
(Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro,
6-Jul-2015.)
|
          ![] ]](rbrack.gif)   ![] ]](rbrack.gif)    |
| |
| Theorem | erth2 6725 |
Basic property of equivalence relations. Compare Theorem 73 of [Suppes]
p. 82. Assumes membership of the second argument in the domain.
(Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro,
6-Jul-2015.)
|
          ![] ]](rbrack.gif)   ![] ]](rbrack.gif)    |
| |
| Theorem | erthi 6726 |
Basic property of equivalence relations. Part of Lemma 3N of [Enderton]
p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro,
9-Jul-2014.)
|
         ![] ]](rbrack.gif)   ![] ]](rbrack.gif)   |
| |
| Theorem | ecidsn 6727 |
An equivalence class modulo the identity relation is a singleton.
(Contributed by NM, 24-Oct-2004.)
|
     |
| |
| Theorem | qseq1 6728 |
Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
|
    
      |
| |
| Theorem | qseq2 6729 |
Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
|
    
      |
| |
| Theorem | elqsg 6730* |
Closed form of elqs 6731. (Contributed by Rodolfo Medina,
12-Oct-2010.)
|
      
  ![] ]](rbrack.gif)    |
| |
| Theorem | elqs 6731* |
Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
|
     
  ![] ]](rbrack.gif)   |
| |
| Theorem | elqsi 6732* |
Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
|
     
  ![] ]](rbrack.gif)   |
| |
| Theorem | ecelqsg 6733 |
Membership of an equivalence class in a quotient set. (Contributed by
Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
     ![] ]](rbrack.gif)
      |
| |
| Theorem | ecelqsi 6734 |
Membership of an equivalence class in a quotient set. (Contributed by
NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
   ![] ]](rbrack.gif)
      |
| |
| Theorem | ecopqsi 6735 |
"Closure" law for equivalence class of ordered pairs. (Contributed
by
NM, 25-Mar-1996.)
|
              ![] ]](rbrack.gif)   |
| |
| Theorem | qsexg 6736 |
A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by
Mario Carneiro, 9-Jul-2014.)
|
    
  |
| |
| Theorem | qsex 6737 |
A quotient set exists. (Contributed by NM, 14-Aug-1995.)
|
   
 |
| |
| Theorem | uniqs 6738 |
The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
|
     
      |
| |
| Theorem | qsss 6739 |
A quotient set is a set of subsets of the base set. (Contributed by
Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro,
12-Aug-2015.)
|
          |
| |
| Theorem | uniqs2 6740 |
The union of a quotient set. (Contributed by Mario Carneiro,
11-Jul-2014.)
|
         
  |
| |
| Theorem | snec 6741 |
The singleton of an equivalence class. (Contributed by NM,
29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
   ![] ]](rbrack.gif)         |
| |
| Theorem | ecqs 6742 |
Equivalence class in terms of quotient set. (Contributed by NM,
29-Jan-1999.)
|
  ![] ]](rbrack.gif)
        |
| |
| Theorem | ecid 6743 |
A set is equal to its converse epsilon coset. (Note: converse epsilon
is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.)
(Revised by Mario Carneiro, 9-Jul-2014.)
|
  ![] ]](rbrack.gif)  |
| |
| Theorem | ecidg 6744 |
A set is equal to its converse epsilon coset. (Note: converse epsilon
is not an equivalence relation.) (Contributed by Jim Kingdon,
8-Jan-2020.)
|
   ![] ]](rbrack.gif)
  |
| |
| Theorem | qsid 6745 |
A set is equal to its quotient set mod converse epsilon. (Note:
converse epsilon is not an equivalence relation.) (Contributed by NM,
13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
  
 |
| |
| Theorem | ectocld 6746* |
Implicit substitution of class for equivalence class. (Contributed by
Mario Carneiro, 9-Jul-2014.)
|
       ![] ]](rbrack.gif)             |
| |
| Theorem | ectocl 6747* |
Implicit substitution of class for equivalence class. (Contributed by
NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
       ![] ]](rbrack.gif)    
    |
| |
| Theorem | elqsn0m 6748* |
An element of a quotient set is inhabited. (Contributed by Jim Kingdon,
21-Aug-2019.)
|
 
    

  |
| |
| Theorem | elqsn0 6749 |
A quotient set doesn't contain the empty set. (Contributed by NM,
24-Aug-1995.)
|
 
    
  |
| |
| Theorem | ecelqsdm 6750 |
Membership of an equivalence class in a quotient set. (Contributed by
NM, 30-Jul-1995.)
|
 
  ![] ]](rbrack.gif)
       |
| |
| Theorem | xpider 6751 |
A square Cartesian product is an equivalence relation (in general it's not
a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro,
12-Aug-2015.)
|
   |
| |
| Theorem | iinerm 6752* |
The intersection of a nonempty family of equivalence relations is an
equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
|
  
     |
| |
| Theorem | riinerm 6753* |
The relative intersection of a family of equivalence relations is an
equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
|
  
      
  |
| |
| Theorem | erinxp 6754 |
A restricted equivalence relation is an equivalence relation.
(Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
           |
| |
| Theorem | ecinxp 6755 |
Restrict the relation in an equivalence class to a base set. (Contributed
by Mario Carneiro, 10-Jul-2015.)
|
         ![] ]](rbrack.gif)
  ![] ]](rbrack.gif)  
    |
| |
| Theorem | qsinxp 6756 |
Restrict the equivalence relation in a quotient set to the base set.
(Contributed by Mario Carneiro, 23-Feb-2015.)
|
    
       
      |
| |
| Theorem | qsel 6757 |
If an element of a quotient set contains a given element, it is equal to
the equivalence class of the element. (Contributed by Mario Carneiro,
12-Aug-2015.)
|
     
   ![] ]](rbrack.gif)   |
| |
| Theorem | qliftlem 6758* |
, a function lift, is
a subset of . (Contributed by
Mario Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)                 ![] ]](rbrack.gif)
      |
| |
| Theorem | qliftrel 6759* |
, a function lift, is
a subset of . (Contributed by
Mario Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)                 
   |
| |
| Theorem | qliftel 6760* |
Elementhood in the relation . (Contributed by Mario Carneiro,
23-Dec-2016.)
|

   ![] ]](rbrack.gif)                ![] ]](rbrack.gif)      
    |
| |
| Theorem | qliftel1 6761* |
Elementhood in the relation . (Contributed by Mario Carneiro,
23-Dec-2016.)
|

   ![] ]](rbrack.gif)                 ![] ]](rbrack.gif)     |
| |
| Theorem | qliftfun 6762* |
The function is the
unique function defined by
    , provided that the well-definedness condition
holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)              
       
    |
| |
| Theorem | qliftfund 6763* |
The function is the
unique function defined by
    , provided that the well-definedness condition
holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)                  
 
  |
| |
| Theorem | qliftfuns 6764* |
The function is the
unique function defined by
    , provided that the well-definedness condition
holds.
(Contributed by Mario Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)                       ![]_ ]_](_urbrack.gif)   ![]_ ]_](_urbrack.gif)     |
| |
| Theorem | qliftf 6765* |
The domain and codomain of the function . (Contributed by Mario
Carneiro, 23-Dec-2016.)
|

   ![] ]](rbrack.gif)                         |
| |
| Theorem | qliftval 6766* |
The value of the function . (Contributed by Mario Carneiro,
23-Dec-2016.)
|

   ![] ]](rbrack.gif)              
         ![] ]](rbrack.gif) 
  |
| |
| Theorem | ecoptocl 6767* |
Implicit substitution of class for equivalence class of ordered pair.
(Contributed by NM, 23-Jul-1995.)
|
            ![] ]](rbrack.gif)     
     |
| |
| Theorem | 2ecoptocl 6768* |
Implicit substitution of classes for equivalence classes of ordered
pairs. (Contributed by NM, 23-Jul-1995.)
|
            ![] ]](rbrack.gif)          ![] ]](rbrack.gif)        
 
      |
| |
| Theorem | 3ecoptocl 6769* |
Implicit substitution of classes for equivalence classes of ordered
pairs. (Contributed by NM, 9-Aug-1995.)
|
            ![] ]](rbrack.gif)          ![] ]](rbrack.gif)          ![] ]](rbrack.gif)        
 
 
  
   |
| |
| Theorem | brecop 6770* |
Binary relation on a quotient set. Lemma for real number construction.
(Contributed by NM, 29-Jan-1996.)
|
           
               
             
 
 
                                   
 
              |
| |
| Theorem | eroveu 6771* |
Lemma for eroprf 6773. (Contributed by Jeff Madsen, 10-Jun-2010.)
(Revised by Mario Carneiro, 9-Jul-2014.)
|
                                
            
         
 
  

    ![] ]](rbrack.gif)
  ![] ]](rbrack.gif)      ![] ]](rbrack.gif)    |
| |
| Theorem | erovlem 6772* |
Lemma for eroprf 6773. (Contributed by Jeff Madsen, 10-Jun-2010.)
(Revised by Mario Carneiro, 30-Dec-2014.)
|
                                
            
               
    ![] ]](rbrack.gif)
  ![] ]](rbrack.gif)      ![] ]](rbrack.gif)     
         ![] ]](rbrack.gif)   ![] ]](rbrack.gif)      ![] ]](rbrack.gif)      |
| |
| Theorem | eroprf 6773* |
Functionality of an operation defined on equivalence classes.
(Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
                                
            
               
    ![] ]](rbrack.gif)
  ![] ]](rbrack.gif)      ![] ]](rbrack.gif)                   |
| |
| Theorem | eroprf2 6774* |
Functionality of an operation defined on equivalence classes.
(Contributed by Jeff Madsen, 10-Jun-2010.)
|
 
      
       
                       
    
  
    
       |
| |
| Theorem | ecopoveq 6775* |
This is the first of several theorems about equivalence relations of
the kind used in construction of fractions and signed reals, involving
operations on equivalent classes of ordered pairs. This theorem
expresses the relation (specified by the hypothesis) in terms
of its operation . (Contributed by NM, 16-Aug-1995.)
|
       
               
     
         
 
        
     |
| |
| Theorem | ecopovsym 6776* |
Assuming the operation is commutative, show that the relation
,
specified by the first hypothesis, is symmetric.
(Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
       
               
     
      

    |
| |
| Theorem | ecopovtrn 6777* |
Assuming that operation is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
,
specified by the first hypothesis, is transitive.
(Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
       
               
     
      

  
  
   
  
         
       |
| |
| Theorem | ecopover 6778* |
Assuming that operation is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
,
specified by the first hypothesis, is an equivalence
relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
       
               
     
      

  
  
   
  
         
 
   |
| |
| Theorem | ecopovsymg 6779* |
Assuming the operation is commutative, show that the relation
,
specified by the first hypothesis, is symmetric.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
       
               
     
                |
| |
| Theorem | ecopovtrng 6780* |
Assuming that operation is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
,
specified by the first hypothesis, is transitive.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
       
               
     
                        
  
          
       |
| |
| Theorem | ecopoverg 6781* |
Assuming that operation is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
,
specified by the first hypothesis, is an equivalence
relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
|
       
               
     
                        
  
          
 
   |
| |
| Theorem | th3qlem1 6782* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The
third hypothesis is the compatibility assumption. (Contributed by NM,
3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
  
 
 
   
          
            
      |
| |
| Theorem | th3qlem2 6783* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60,
extended to operations on ordered pairs. The fourth hypothesis is the
compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by
Mario Carneiro, 12-Aug-2015.)
|
       
 
 
 
       
  
  
               
                                 
    
            |
| |
| Theorem | th3qcor 6784* |
Corollary of Theorem 3Q of [Enderton] p. 60.
(Contributed by NM,
12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
       
 
 
 
       
  
  
               
     
                                
    
             |
| |
| Theorem | th3q 6785* |
Theorem 3Q of [Enderton] p. 60, extended to
operations on ordered
pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro,
19-Dec-2013.)
|
       
 
 
 
       
  
  
               
     
                                
    
                
 
           
           |
| |
| Theorem | oviec 6786* |
Express an operation on equivalence classes of ordered pairs in terms of
equivalence class of operations on ordered pairs. See iset.mm for
additional comments describing the hypotheses. (Unnecessary distinct
variable restrictions were removed by David Abernethy, 4-Jun-2013.)
(Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro,
4-Jun-2013.)
|
    
 

    
 
 

    
 
 

           
               
           
 
     
                 
               
           
 
   
       
 
 
    
  
 
                    
                     
 
 
 
     
    
   
              |
| |
| Theorem | ecovcom 6787* |
Lemma used to transfer a commutative law via an equivalence relation.
Most uses will want ecovicom 6788 instead. (Contributed by NM,
29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
   
    
 
     
              
 
     
              
    |
| |
| Theorem | ecovicom 6788* |
Lemma used to transfer a commutative law via an equivalence relation.
(Contributed by Jim Kingdon, 15-Sep-2019.)
|
   
    
 
     
              
 
     
              
 
   
 
 
     
    |
| |
| Theorem | ecovass 6789* |
Lemma used to transfer an associative law via an equivalence relation.
In most cases ecoviass 6790 will be more useful. (Contributed by NM,
31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
   
    
 
     
              
 
     
                           
         
 
     
              
 
       
 
    
   
  
    |
| |
| Theorem | ecoviass 6790* |
Lemma used to transfer an associative law via an equivalence relation.
(Contributed by Jim Kingdon, 16-Sep-2019.)
|
   
    
 
     
              
 
     
                           
         
 
     
              
 
       
 
       
 
 
   
 
   
  
   
  
    |
| |
| Theorem | ecovdi 6791* |
Lemma used to transfer a distributive law via an equivalence relation.
Most likely ecovidi 6792 will be more helpful. (Contributed by NM,
2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
   
    
 
     
              
 
                    
 
                    
 
                      
     
              
 
       
 
       
 
    
             |
| |
| Theorem | ecovidi 6792* |
Lemma used to transfer a distributive law via an equivalence relation.
(Contributed by Jim Kingdon, 17-Sep-2019.)
|
   
    
 
     
              
 
                    
 
                    
 
                      
     
              
 
       
 
       
 
       
 
 
   
 
   
  
             |
| |
| 2.6.26 The mapping operation
|
| |
| Syntax | cmap 6793 |
Extend the definition of a class to include the mapping operation. (Read
for , "the set of all functions that map
from to
.)
|
 |
| |
| Syntax | cpm 6794 |
Extend the definition of a class to include the partial mapping operation.
(Read for , "the set of all partial functions
that map from
to .)
|
 |
| |
| Definition | df-map 6795* |
Define the mapping operation or set exponentiation. The set of all
functions that map from to is
written   (see
mapval 6805). Many authors write followed by as a superscript
for this operation and rely on context to avoid confusion other
exponentiation operations (e.g., Definition 10.42 of [TakeutiZaring]
p. 95). Other authors show as a prefixed superscript, which is
read " pre
" (e.g.,
definition of [Enderton] p. 52).
Definition 8.21 of [Eisenberg] p. 125
uses the notation Map( ,
) for our   . The up-arrow is used by
Donald Knuth
for iterated exponentiation (Science 194, 1235-1242, 1976). We
adopt
the first case of his notation (simple exponentiation) and subscript it
with m to distinguish it from other kinds of exponentiation.
(Contributed by NM, 8-Dec-2003.)
|
          |
| |
| Definition | df-pm 6796* |
Define the partial mapping operation. A partial function from to
is a function
from a subset of to
. The set of all
partial functions from to is
written   (see
pmvalg 6804). A notation for this operation apparently
does not appear in
the literature. We use to distinguish it from the less general
set exponentiation operation (df-map 6795) . See mapsspm 6827 for
its relationship to set exponentiation. (Contributed by NM,
15-Nov-2007.)
|
    

   |
| |
| Theorem | mapprc 6797* |
When is a proper
class, the class of all functions mapping
to is empty.
Exercise 4.41 of [Mendelson] p. 255.
(Contributed
by NM, 8-Dec-2003.)
|
         |
| |
| Theorem | pmex 6798* |
The class of all partial functions from one set to another is a set.
(Contributed by NM, 15-Nov-2007.)
|
           |
| |
| Theorem | mapex 6799* |
The class of all functions mapping one set to another is a set. Remark
after Definition 10.24 of [Kunen] p. 31.
(Contributed by Raph Levien,
4-Dec-2003.)
|
           |
| |
| Theorem | fnmap 6800 |
Set exponentiation has a universal domain. (Contributed by NM,
8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
   |