ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-en GIF version

Definition df-en 6896
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6903. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6893 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1394 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1394 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1394 . . . . 5 class 𝑓
83, 5, 7wf1o 5317 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1538 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 4144 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1395 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff set class
This definition is referenced by:  relen  6899  breng  6902  bren  6903  enssdom  6921
  Copyright terms: Public domain W3C validator