![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-en | GIF version |
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6571. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
df-en | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cen 6562 | . 2 class ≈ | |
2 | vx | . . . . . 6 setvar 𝑥 | |
3 | 2 | cv 1298 | . . . . 5 class 𝑥 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1298 | . . . . 5 class 𝑦 |
6 | vf | . . . . . 6 setvar 𝑓 | |
7 | 6 | cv 1298 | . . . . 5 class 𝑓 |
8 | 3, 5, 7 | wf1o 5058 | . . . 4 wff 𝑓:𝑥–1-1-onto→𝑦 |
9 | 8, 6 | wex 1436 | . . 3 wff ∃𝑓 𝑓:𝑥–1-1-onto→𝑦 |
10 | 9, 2, 4 | copab 3928 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
11 | 1, 10 | wceq 1299 | 1 wff ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
Colors of variables: wff set class |
This definition is referenced by: relen 6568 bren 6571 enssdom 6586 |
Copyright terms: Public domain | W3C validator |