ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-en GIF version

Definition df-en 6703
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6709. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6700 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1342 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1342 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1342 . . . . 5 class 𝑓
83, 5, 7wf1o 5186 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1480 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 4041 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1343 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff set class
This definition is referenced by:  relen  6706  bren  6709  enssdom  6724
  Copyright terms: Public domain W3C validator