ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-en GIF version

Definition df-en 6835
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6842. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6832 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1372 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1372 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1372 . . . . 5 class 𝑓
83, 5, 7wf1o 5275 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1516 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 4108 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1373 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff set class
This definition is referenced by:  relen  6838  breng  6841  bren  6842  enssdom  6860
  Copyright terms: Public domain W3C validator