ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-en GIF version

Definition df-en 6858
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6865. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6855 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1374 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1374 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1374 . . . . 5 class 𝑓
83, 5, 7wf1o 5293 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1518 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 4123 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1375 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff set class
This definition is referenced by:  relen  6861  breng  6864  bren  6865  enssdom  6883
  Copyright terms: Public domain W3C validator