ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-en GIF version

Definition df-en 6731
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6737. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6728 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1352 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1352 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1352 . . . . 5 class 𝑓
83, 5, 7wf1o 5207 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1490 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 4058 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1353 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff set class
This definition is referenced by:  relen  6734  bren  6737  enssdom  6752
  Copyright terms: Public domain W3C validator