| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-en | GIF version | ||
| Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6842. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| df-en | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cen 6832 | . 2 class ≈ | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1372 | . . . . 5 class 𝑥 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1372 | . . . . 5 class 𝑦 |
| 6 | vf | . . . . . 6 setvar 𝑓 | |
| 7 | 6 | cv 1372 | . . . . 5 class 𝑓 |
| 8 | 3, 5, 7 | wf1o 5275 | . . . 4 wff 𝑓:𝑥–1-1-onto→𝑦 |
| 9 | 8, 6 | wex 1516 | . . 3 wff ∃𝑓 𝑓:𝑥–1-1-onto→𝑦 |
| 10 | 9, 2, 4 | copab 4108 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| 11 | 1, 10 | wceq 1373 | 1 wff ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| Colors of variables: wff set class |
| This definition is referenced by: relen 6838 breng 6841 bren 6842 enssdom 6860 |
| Copyright terms: Public domain | W3C validator |