![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-en | GIF version |
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6747. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
df-en | ⊢ ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cen 6738 | . 2 class ≈ | |
2 | vx | . . . . . 6 setvar 𝑥 | |
3 | 2 | cv 1352 | . . . . 5 class 𝑥 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1352 | . . . . 5 class 𝑦 |
6 | vf | . . . . . 6 setvar 𝑓 | |
7 | 6 | cv 1352 | . . . . 5 class 𝑓 |
8 | 3, 5, 7 | wf1o 5216 | . . . 4 wff 𝑓:𝑥–1-1-onto→𝑦 |
9 | 8, 6 | wex 1492 | . . 3 wff ∃𝑓 𝑓:𝑥–1-1-onto→𝑦 |
10 | 9, 2, 4 | copab 4064 | . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
11 | 1, 10 | wceq 1353 | 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
Colors of variables: wff set class |
This definition is referenced by: relen 6744 bren 6747 enssdom 6762 |
Copyright terms: Public domain | W3C validator |