| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-en | GIF version | ||
| Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6903. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| df-en | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cen 6893 | . 2 class ≈ | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1394 | . . . . 5 class 𝑥 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1394 | . . . . 5 class 𝑦 |
| 6 | vf | . . . . . 6 setvar 𝑓 | |
| 7 | 6 | cv 1394 | . . . . 5 class 𝑓 |
| 8 | 3, 5, 7 | wf1o 5317 | . . . 4 wff 𝑓:𝑥–1-1-onto→𝑦 |
| 9 | 8, 6 | wex 1538 | . . 3 wff ∃𝑓 𝑓:𝑥–1-1-onto→𝑦 |
| 10 | 9, 2, 4 | copab 4144 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| 11 | 1, 10 | wceq 1395 | 1 wff ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| Colors of variables: wff set class |
| This definition is referenced by: relen 6899 breng 6902 bren 6903 enssdom 6921 |
| Copyright terms: Public domain | W3C validator |