| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bren | Unicode version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| bren |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 6833 |
. 2
| |
| 2 | f1ofn 5523 |
. . . . 5
| |
| 3 | fndm 5373 |
. . . . . 6
| |
| 4 | vex 2775 |
. . . . . . 7
| |
| 5 | 4 | dmex 4945 |
. . . . . 6
|
| 6 | 3, 5 | eqeltrrdi 2297 |
. . . . 5
|
| 7 | 2, 6 | syl 14 |
. . . 4
|
| 8 | f1ofo 5529 |
. . . . . 6
| |
| 9 | forn 5501 |
. . . . . 6
| |
| 10 | 8, 9 | syl 14 |
. . . . 5
|
| 11 | 4 | rnex 4946 |
. . . . 5
|
| 12 | 10, 11 | eqeltrrdi 2297 |
. . . 4
|
| 13 | 7, 12 | jca 306 |
. . 3
|
| 14 | 13 | exlimiv 1621 |
. 2
|
| 15 | f1oeq2 5511 |
. . . 4
| |
| 16 | 15 | exbidv 1848 |
. . 3
|
| 17 | f1oeq3 5512 |
. . . 4
| |
| 18 | 17 | exbidv 1848 |
. . 3
|
| 19 | df-en 6828 |
. . 3
| |
| 20 | 16, 18, 19 | brabg 4315 |
. 2
|
| 21 | 1, 14, 20 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 df-dm 4685 df-rn 4686 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-en 6828 |
| This theorem is referenced by: domen 6840 f1oen3g 6845 ener 6871 en0 6887 ensn1 6888 en1 6891 unen 6908 en2 6912 enm 6915 xpen 6942 mapen 6943 ssenen 6948 phplem4 6952 phplem4on 6964 fidceq 6966 dif1en 6976 fin0 6982 fin0or 6983 en2eqpr 7004 fiintim 7028 fidcenumlemim 7054 enomnilem 7240 enmkvlem 7263 enwomnilem 7271 cc3 7380 hasheqf1o 10930 hashfacen 10981 fz1f1o 11686 nninfct 12362 eulerth 12555 ennnfonelemim 12795 exmidunben 12797 ctinfom 12799 qnnen 12802 enctlem 12803 ctiunct 12811 exmidsbthrlem 15961 sbthom 15965 |
| Copyright terms: Public domain | W3C validator |