| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bren | Unicode version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| bren |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 6814 |
. 2
| |
| 2 | f1ofn 5508 |
. . . . 5
| |
| 3 | fndm 5358 |
. . . . . 6
| |
| 4 | vex 2766 |
. . . . . . 7
| |
| 5 | 4 | dmex 4933 |
. . . . . 6
|
| 6 | 3, 5 | eqeltrrdi 2288 |
. . . . 5
|
| 7 | 2, 6 | syl 14 |
. . . 4
|
| 8 | f1ofo 5514 |
. . . . . 6
| |
| 9 | forn 5486 |
. . . . . 6
| |
| 10 | 8, 9 | syl 14 |
. . . . 5
|
| 11 | 4 | rnex 4934 |
. . . . 5
|
| 12 | 10, 11 | eqeltrrdi 2288 |
. . . 4
|
| 13 | 7, 12 | jca 306 |
. . 3
|
| 14 | 13 | exlimiv 1612 |
. 2
|
| 15 | f1oeq2 5496 |
. . . 4
| |
| 16 | 15 | exbidv 1839 |
. . 3
|
| 17 | f1oeq3 5497 |
. . . 4
| |
| 18 | 17 | exbidv 1839 |
. . 3
|
| 19 | df-en 6809 |
. . 3
| |
| 20 | 16, 18, 19 | brabg 4304 |
. 2
|
| 21 | 1, 14, 20 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-dm 4674 df-rn 4675 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-en 6809 |
| This theorem is referenced by: domen 6819 f1oen3g 6822 ener 6847 en0 6863 ensn1 6864 en1 6867 unen 6884 enm 6888 xpen 6915 mapen 6916 ssenen 6921 phplem4 6925 phplem4on 6937 fidceq 6939 dif1en 6949 fin0 6955 fin0or 6956 en2eqpr 6977 fiintim 7001 fidcenumlemim 7027 enomnilem 7213 enmkvlem 7236 enwomnilem 7244 cc3 7351 hasheqf1o 10894 hashfacen 10945 fz1f1o 11557 nninfct 12233 eulerth 12426 ennnfonelemim 12666 exmidunben 12668 ctinfom 12670 qnnen 12673 enctlem 12674 ctiunct 12682 exmidsbthrlem 15753 sbthom 15757 |
| Copyright terms: Public domain | W3C validator |