| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bren | Unicode version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| bren |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 6891 |
. 2
| |
| 2 | f1ofn 5572 |
. . . . 5
| |
| 3 | fndm 5419 |
. . . . . 6
| |
| 4 | vex 2802 |
. . . . . . 7
| |
| 5 | 4 | dmex 4990 |
. . . . . 6
|
| 6 | 3, 5 | eqeltrrdi 2321 |
. . . . 5
|
| 7 | 2, 6 | syl 14 |
. . . 4
|
| 8 | f1ofo 5578 |
. . . . . 6
| |
| 9 | forn 5550 |
. . . . . 6
| |
| 10 | 8, 9 | syl 14 |
. . . . 5
|
| 11 | 4 | rnex 4991 |
. . . . 5
|
| 12 | 10, 11 | eqeltrrdi 2321 |
. . . 4
|
| 13 | 7, 12 | jca 306 |
. . 3
|
| 14 | 13 | exlimiv 1644 |
. 2
|
| 15 | f1oeq2 5560 |
. . . 4
| |
| 16 | 15 | exbidv 1871 |
. . 3
|
| 17 | f1oeq3 5561 |
. . . 4
| |
| 18 | 17 | exbidv 1871 |
. . 3
|
| 19 | df-en 6886 |
. . 3
| |
| 20 | 16, 18, 19 | brabg 4356 |
. 2
|
| 21 | 1, 14, 20 | pm5.21nii 709 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-dm 4728 df-rn 4729 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-en 6886 |
| This theorem is referenced by: domen 6898 f1oen3g 6903 ener 6929 en0 6945 ensn1 6946 en1 6949 unen 6967 en2 6971 enm 6975 xpen 7002 mapen 7003 ssenen 7008 phplem4 7012 phplem4on 7025 fidceq 7027 dif1en 7037 fin0 7043 fin0or 7044 en2eqpr 7065 fiintim 7089 fidcenumlemim 7115 enomnilem 7301 enmkvlem 7324 enwomnilem 7332 pr2cv1 7364 cc3 7450 hasheqf1o 11002 hashfacen 11053 fz1f1o 11881 nninfct 12557 eulerth 12750 ennnfonelemim 12990 exmidunben 12992 ctinfom 12994 qnnen 12997 enctlem 12998 ctiunct 13006 exmidsbthrlem 16349 sbthom 16353 |
| Copyright terms: Public domain | W3C validator |