Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bren | Unicode version |
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
bren |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 6712 | . 2 | |
2 | f1ofn 5433 | . . . . 5 | |
3 | fndm 5287 | . . . . . 6 | |
4 | vex 2729 | . . . . . . 7 | |
5 | 4 | dmex 4870 | . . . . . 6 |
6 | 3, 5 | eqeltrrdi 2258 | . . . . 5 |
7 | 2, 6 | syl 14 | . . . 4 |
8 | f1ofo 5439 | . . . . . 6 | |
9 | forn 5413 | . . . . . 6 | |
10 | 8, 9 | syl 14 | . . . . 5 |
11 | 4 | rnex 4871 | . . . . 5 |
12 | 10, 11 | eqeltrrdi 2258 | . . . 4 |
13 | 7, 12 | jca 304 | . . 3 |
14 | 13 | exlimiv 1586 | . 2 |
15 | f1oeq2 5422 | . . . 4 | |
16 | 15 | exbidv 1813 | . . 3 |
17 | f1oeq3 5423 | . . . 4 | |
18 | 17 | exbidv 1813 | . . 3 |
19 | df-en 6707 | . . 3 | |
20 | 16, 18, 19 | brabg 4247 | . 2 |
21 | 1, 14, 20 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 class class class wbr 3982 cdm 4604 crn 4605 wfn 5183 wfo 5186 wf1o 5187 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-en 6707 |
This theorem is referenced by: domen 6717 f1oen3g 6720 ener 6745 en0 6761 ensn1 6762 en1 6765 unen 6782 enm 6786 xpen 6811 mapen 6812 ssenen 6817 phplem4 6821 phplem4on 6833 fidceq 6835 dif1en 6845 fin0 6851 fin0or 6852 en2eqpr 6873 fiintim 6894 fidcenumlemim 6917 enomnilem 7102 enmkvlem 7125 enwomnilem 7133 cc3 7209 hasheqf1o 10698 hashfacen 10749 fz1f1o 11316 eulerth 12165 ennnfonelemim 12357 exmidunben 12359 ctinfom 12361 qnnen 12364 enctlem 12365 ctiunct 12373 exmidsbthrlem 13901 sbthom 13905 |
Copyright terms: Public domain | W3C validator |