| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bren | Unicode version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| bren |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 6856 |
. 2
| |
| 2 | f1ofn 5545 |
. . . . 5
| |
| 3 | fndm 5392 |
. . . . . 6
| |
| 4 | vex 2779 |
. . . . . . 7
| |
| 5 | 4 | dmex 4964 |
. . . . . 6
|
| 6 | 3, 5 | eqeltrrdi 2299 |
. . . . 5
|
| 7 | 2, 6 | syl 14 |
. . . 4
|
| 8 | f1ofo 5551 |
. . . . . 6
| |
| 9 | forn 5523 |
. . . . . 6
| |
| 10 | 8, 9 | syl 14 |
. . . . 5
|
| 11 | 4 | rnex 4965 |
. . . . 5
|
| 12 | 10, 11 | eqeltrrdi 2299 |
. . . 4
|
| 13 | 7, 12 | jca 306 |
. . 3
|
| 14 | 13 | exlimiv 1622 |
. 2
|
| 15 | f1oeq2 5533 |
. . . 4
| |
| 16 | 15 | exbidv 1849 |
. . 3
|
| 17 | f1oeq3 5534 |
. . . 4
| |
| 18 | 17 | exbidv 1849 |
. . 3
|
| 19 | df-en 6851 |
. . 3
| |
| 20 | 16, 18, 19 | brabg 4333 |
. 2
|
| 21 | 1, 14, 20 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-dm 4703 df-rn 4704 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-en 6851 |
| This theorem is referenced by: domen 6863 f1oen3g 6868 ener 6894 en0 6910 ensn1 6911 en1 6914 unen 6932 en2 6936 enm 6940 xpen 6967 mapen 6968 ssenen 6973 phplem4 6977 phplem4on 6990 fidceq 6992 dif1en 7002 fin0 7008 fin0or 7009 en2eqpr 7030 fiintim 7054 fidcenumlemim 7080 enomnilem 7266 enmkvlem 7289 enwomnilem 7297 pr2cv1 7329 cc3 7415 hasheqf1o 10967 hashfacen 11018 fz1f1o 11801 nninfct 12477 eulerth 12670 ennnfonelemim 12910 exmidunben 12912 ctinfom 12914 qnnen 12917 enctlem 12918 ctiunct 12926 exmidsbthrlem 16163 sbthom 16167 |
| Copyright terms: Public domain | W3C validator |