ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfi2 Unicode version

Theorem elfi2 6949
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
elfi2  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) )
Distinct variable groups:    x, A    x, B    x, V

Proof of Theorem elfi2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2741 . . 3  |-  ( A  e.  ( fi `  B )  ->  A  e.  _V )
21a1i 9 . 2  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  ->  A  e.  _V ) )
3 simpr 109 . . . . 5  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  A  =  |^| x )
4 eldifsni 3712 . . . . . . . 8  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  =/=  (/) )
54adantr 274 . . . . . . 7  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  x  =/=  (/) )
6 eldifi 3249 . . . . . . . . . 10  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  e.  ( ~P B  i^i  Fin ) )
76elin2d 3317 . . . . . . . . 9  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  e.  Fin )
87adantr 274 . . . . . . . 8  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  x  e.  Fin )
9 fin0 6863 . . . . . . . 8  |-  ( x  e.  Fin  ->  (
x  =/=  (/)  <->  E. z 
z  e.  x ) )
108, 9syl 14 . . . . . . 7  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  (
x  =/=  (/)  <->  E. z 
z  e.  x ) )
115, 10mpbid 146 . . . . . 6  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  E. z 
z  e.  x )
12 inteximm 4135 . . . . . 6  |-  ( E. z  z  e.  x  ->  |^| x  e.  _V )
1311, 12syl 14 . . . . 5  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  |^| x  e.  _V )
143, 13eqeltrd 2247 . . . 4  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  A  e.  _V )
1514rexlimiva 2582 . . 3  |-  ( E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x  ->  A  e.  _V )
1615a1i 9 . 2  |-  ( B  e.  V  ->  ( E. x  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x  ->  A  e.  _V ) )
17 elfi 6948 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
18 vprc 4121 . . . . . . . . . . 11  |-  -.  _V  e.  _V
19 elsni 3601 . . . . . . . . . . . . . 14  |-  ( x  e.  { (/) }  ->  x  =  (/) )
2019inteqd 3836 . . . . . . . . . . . . 13  |-  ( x  e.  { (/) }  ->  |^| x  =  |^| (/) )
21 int0 3845 . . . . . . . . . . . . 13  |-  |^| (/)  =  _V
2220, 21eqtrdi 2219 . . . . . . . . . . . 12  |-  ( x  e.  { (/) }  ->  |^| x  =  _V )
2322eleq1d 2239 . . . . . . . . . . 11  |-  ( x  e.  { (/) }  ->  (
|^| x  e.  _V  <->  _V  e.  _V ) )
2418, 23mtbiri 670 . . . . . . . . . 10  |-  ( x  e.  { (/) }  ->  -. 
|^| x  e.  _V )
25 simpr 109 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  A  =  |^| x )
26 simpll 524 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  A  e.  _V )
2725, 26eqeltrrd 2248 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  |^| x  e.  _V )
2824, 27nsyl3 621 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  -.  x  e.  { (/) } )
2928biantrud 302 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  (
x  e.  ( ~P B  i^i  Fin )  <->  ( x  e.  ( ~P B  i^i  Fin )  /\  -.  x  e.  { (/)
} ) ) )
30 eldif 3130 . . . . . . . 8  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  <->  ( x  e.  ( ~P B  i^i  Fin )  /\  -.  x  e.  { (/) } ) )
3129, 30bitr4di 197 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  (
x  e.  ( ~P B  i^i  Fin )  <->  x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) ) )
3231pm5.32da 449 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( ( A  = 
|^| x  /\  x  e.  ( ~P B  i^i  Fin ) )  <->  ( A  =  |^| x  /\  x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) ) ) )
33 ancom 264 . . . . . 6  |-  ( ( x  e.  ( ~P B  i^i  Fin )  /\  A  =  |^| x )  <->  ( A  =  |^| x  /\  x  e.  ( ~P B  i^i  Fin ) ) )
34 ancom 264 . . . . . 6  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  <->  ( A  =  |^| x  /\  x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) ) )
3532, 33, 343bitr4g 222 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( ( x  e.  ( ~P B  i^i  Fin )  /\  A  = 
|^| x )  <->  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} )  /\  A  =  |^| x ) ) )
3635rexbidv2 2473 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x 
<->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
3717, 36bitrd 187 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
3837expcom 115 . 2  |-  ( B  e.  V  ->  ( A  e.  _V  ->  ( A  e.  ( fi
`  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) ) )
392, 16, 38pm5.21ndd 700 1  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340   E.wrex 2449   _Vcvv 2730    \ cdif 3118    i^i cin 3120   (/)c0 3414   ~Pcpw 3566   {csn 3583   |^|cint 3831   ` cfv 5198   Fincfn 6718   ficfi 6945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-fin 6721  df-fi 6946
This theorem is referenced by:  fiuni  6955  fifo  6957
  Copyright terms: Public domain W3C validator