Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfi2 | Unicode version |
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
elfi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | simpr 109 | . . . . 5 | |
4 | eldifsni 3705 | . . . . . . . 8 | |
5 | 4 | adantr 274 | . . . . . . 7 |
6 | eldifi 3244 | . . . . . . . . . 10 | |
7 | 6 | elin2d 3312 | . . . . . . . . 9 |
8 | 7 | adantr 274 | . . . . . . . 8 |
9 | fin0 6851 | . . . . . . . 8 | |
10 | 8, 9 | syl 14 | . . . . . . 7 |
11 | 5, 10 | mpbid 146 | . . . . . 6 |
12 | inteximm 4128 | . . . . . 6 | |
13 | 11, 12 | syl 14 | . . . . 5 |
14 | 3, 13 | eqeltrd 2243 | . . . 4 |
15 | 14 | rexlimiva 2578 | . . 3 |
16 | 15 | a1i 9 | . 2 |
17 | elfi 6936 | . . . 4 | |
18 | vprc 4114 | . . . . . . . . . . 11 | |
19 | elsni 3594 | . . . . . . . . . . . . . 14 | |
20 | 19 | inteqd 3829 | . . . . . . . . . . . . 13 |
21 | int0 3838 | . . . . . . . . . . . . 13 | |
22 | 20, 21 | eqtrdi 2215 | . . . . . . . . . . . 12 |
23 | 22 | eleq1d 2235 | . . . . . . . . . . 11 |
24 | 18, 23 | mtbiri 665 | . . . . . . . . . 10 |
25 | simpr 109 | . . . . . . . . . . 11 | |
26 | simpll 519 | . . . . . . . . . . 11 | |
27 | 25, 26 | eqeltrrd 2244 | . . . . . . . . . 10 |
28 | 24, 27 | nsyl3 616 | . . . . . . . . 9 |
29 | 28 | biantrud 302 | . . . . . . . 8 |
30 | eldif 3125 | . . . . . . . 8 | |
31 | 29, 30 | bitr4di 197 | . . . . . . 7 |
32 | 31 | pm5.32da 448 | . . . . . 6 |
33 | ancom 264 | . . . . . 6 | |
34 | ancom 264 | . . . . . 6 | |
35 | 32, 33, 34 | 3bitr4g 222 | . . . . 5 |
36 | 35 | rexbidv2 2469 | . . . 4 |
37 | 17, 36 | bitrd 187 | . . 3 |
38 | 37 | expcom 115 | . 2 |
39 | 2, 16, 38 | pm5.21ndd 695 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wne 2336 wrex 2445 cvv 2726 cdif 3113 cin 3115 c0 3409 cpw 3559 csn 3576 cint 3824 cfv 5188 cfn 6706 cfi 6933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 df-fi 6934 |
This theorem is referenced by: fiuni 6943 fifo 6945 |
Copyright terms: Public domain | W3C validator |