Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfi2 | Unicode version |
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
elfi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2720 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | simpr 109 | . . . . 5 | |
4 | eldifsni 3684 | . . . . . . . 8 | |
5 | 4 | adantr 274 | . . . . . . 7 |
6 | eldifi 3225 | . . . . . . . . . 10 | |
7 | 6 | elin2d 3293 | . . . . . . . . 9 |
8 | 7 | adantr 274 | . . . . . . . 8 |
9 | fin0 6819 | . . . . . . . 8 | |
10 | 8, 9 | syl 14 | . . . . . . 7 |
11 | 5, 10 | mpbid 146 | . . . . . 6 |
12 | inteximm 4106 | . . . . . 6 | |
13 | 11, 12 | syl 14 | . . . . 5 |
14 | 3, 13 | eqeltrd 2231 | . . . 4 |
15 | 14 | rexlimiva 2566 | . . 3 |
16 | 15 | a1i 9 | . 2 |
17 | elfi 6904 | . . . 4 | |
18 | vprc 4092 | . . . . . . . . . . 11 | |
19 | elsni 3574 | . . . . . . . . . . . . . 14 | |
20 | 19 | inteqd 3808 | . . . . . . . . . . . . 13 |
21 | int0 3817 | . . . . . . . . . . . . 13 | |
22 | 20, 21 | eqtrdi 2203 | . . . . . . . . . . . 12 |
23 | 22 | eleq1d 2223 | . . . . . . . . . . 11 |
24 | 18, 23 | mtbiri 665 | . . . . . . . . . 10 |
25 | simpr 109 | . . . . . . . . . . 11 | |
26 | simpll 519 | . . . . . . . . . . 11 | |
27 | 25, 26 | eqeltrrd 2232 | . . . . . . . . . 10 |
28 | 24, 27 | nsyl3 616 | . . . . . . . . 9 |
29 | 28 | biantrud 302 | . . . . . . . 8 |
30 | eldif 3107 | . . . . . . . 8 | |
31 | 29, 30 | bitr4di 197 | . . . . . . 7 |
32 | 31 | pm5.32da 448 | . . . . . 6 |
33 | ancom 264 | . . . . . 6 | |
34 | ancom 264 | . . . . . 6 | |
35 | 32, 33, 34 | 3bitr4g 222 | . . . . 5 |
36 | 35 | rexbidv2 2457 | . . . 4 |
37 | 17, 36 | bitrd 187 | . . 3 |
38 | 37 | expcom 115 | . 2 |
39 | 2, 16, 38 | pm5.21ndd 695 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1332 wex 1469 wcel 2125 wne 2324 wrex 2433 cvv 2709 cdif 3095 cin 3097 c0 3390 cpw 3539 csn 3556 cint 3803 cfv 5163 cfn 6674 cfi 6901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-er 6469 df-en 6675 df-fin 6677 df-fi 6902 |
This theorem is referenced by: fiuni 6911 fifo 6913 |
Copyright terms: Public domain | W3C validator |