ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfi2 Unicode version

Theorem elfi2 7135
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
elfi2  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) )
Distinct variable groups:    x, A    x, B    x, V

Proof of Theorem elfi2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . 3  |-  ( A  e.  ( fi `  B )  ->  A  e.  _V )
21a1i 9 . 2  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  ->  A  e.  _V ) )
3 simpr 110 . . . . 5  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  A  =  |^| x )
4 eldifsni 3796 . . . . . . . 8  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  =/=  (/) )
54adantr 276 . . . . . . 7  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  x  =/=  (/) )
6 eldifi 3326 . . . . . . . . . 10  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  e.  ( ~P B  i^i  Fin ) )
76elin2d 3394 . . . . . . . . 9  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  e.  Fin )
87adantr 276 . . . . . . . 8  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  x  e.  Fin )
9 fin0 7043 . . . . . . . 8  |-  ( x  e.  Fin  ->  (
x  =/=  (/)  <->  E. z 
z  e.  x ) )
108, 9syl 14 . . . . . . 7  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  (
x  =/=  (/)  <->  E. z 
z  e.  x ) )
115, 10mpbid 147 . . . . . 6  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  E. z 
z  e.  x )
12 inteximm 4232 . . . . . 6  |-  ( E. z  z  e.  x  ->  |^| x  e.  _V )
1311, 12syl 14 . . . . 5  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  |^| x  e.  _V )
143, 13eqeltrd 2306 . . . 4  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  A  e.  _V )
1514rexlimiva 2643 . . 3  |-  ( E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x  ->  A  e.  _V )
1615a1i 9 . 2  |-  ( B  e.  V  ->  ( E. x  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x  ->  A  e.  _V ) )
17 elfi 7134 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
18 vprc 4215 . . . . . . . . . . 11  |-  -.  _V  e.  _V
19 elsni 3684 . . . . . . . . . . . . . 14  |-  ( x  e.  { (/) }  ->  x  =  (/) )
2019inteqd 3927 . . . . . . . . . . . . 13  |-  ( x  e.  { (/) }  ->  |^| x  =  |^| (/) )
21 int0 3936 . . . . . . . . . . . . 13  |-  |^| (/)  =  _V
2220, 21eqtrdi 2278 . . . . . . . . . . . 12  |-  ( x  e.  { (/) }  ->  |^| x  =  _V )
2322eleq1d 2298 . . . . . . . . . . 11  |-  ( x  e.  { (/) }  ->  (
|^| x  e.  _V  <->  _V  e.  _V ) )
2418, 23mtbiri 679 . . . . . . . . . 10  |-  ( x  e.  { (/) }  ->  -. 
|^| x  e.  _V )
25 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  A  =  |^| x )
26 simpll 527 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  A  e.  _V )
2725, 26eqeltrrd 2307 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  |^| x  e.  _V )
2824, 27nsyl3 629 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  -.  x  e.  { (/) } )
2928biantrud 304 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  (
x  e.  ( ~P B  i^i  Fin )  <->  ( x  e.  ( ~P B  i^i  Fin )  /\  -.  x  e.  { (/)
} ) ) )
30 eldif 3206 . . . . . . . 8  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  <->  ( x  e.  ( ~P B  i^i  Fin )  /\  -.  x  e.  { (/) } ) )
3129, 30bitr4di 198 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  (
x  e.  ( ~P B  i^i  Fin )  <->  x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) ) )
3231pm5.32da 452 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( ( A  = 
|^| x  /\  x  e.  ( ~P B  i^i  Fin ) )  <->  ( A  =  |^| x  /\  x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) ) ) )
33 ancom 266 . . . . . 6  |-  ( ( x  e.  ( ~P B  i^i  Fin )  /\  A  =  |^| x )  <->  ( A  =  |^| x  /\  x  e.  ( ~P B  i^i  Fin ) ) )
34 ancom 266 . . . . . 6  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  <->  ( A  =  |^| x  /\  x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) ) )
3532, 33, 343bitr4g 223 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( ( x  e.  ( ~P B  i^i  Fin )  /\  A  = 
|^| x )  <->  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} )  /\  A  =  |^| x ) ) )
3635rexbidv2 2533 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x 
<->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
3717, 36bitrd 188 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
3837expcom 116 . 2  |-  ( B  e.  V  ->  ( A  e.  _V  ->  ( A  e.  ( fi
`  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) ) )
392, 16, 38pm5.21ndd 710 1  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200    =/= wne 2400   E.wrex 2509   _Vcvv 2799    \ cdif 3194    i^i cin 3196   (/)c0 3491   ~Pcpw 3649   {csn 3666   |^|cint 3922   ` cfv 5317   Fincfn 6885   ficfi 7131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886  df-fin 6888  df-fi 7132
This theorem is referenced by:  fiuni  7141  fifo  7143
  Copyright terms: Public domain W3C validator