ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfi2 Unicode version

Theorem elfi2 7074
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
elfi2  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) )
Distinct variable groups:    x, A    x, B    x, V

Proof of Theorem elfi2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2783 . . 3  |-  ( A  e.  ( fi `  B )  ->  A  e.  _V )
21a1i 9 . 2  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  ->  A  e.  _V ) )
3 simpr 110 . . . . 5  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  A  =  |^| x )
4 eldifsni 3762 . . . . . . . 8  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  =/=  (/) )
54adantr 276 . . . . . . 7  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  x  =/=  (/) )
6 eldifi 3295 . . . . . . . . . 10  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  e.  ( ~P B  i^i  Fin ) )
76elin2d 3363 . . . . . . . . 9  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  e.  Fin )
87adantr 276 . . . . . . . 8  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  x  e.  Fin )
9 fin0 6982 . . . . . . . 8  |-  ( x  e.  Fin  ->  (
x  =/=  (/)  <->  E. z 
z  e.  x ) )
108, 9syl 14 . . . . . . 7  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  (
x  =/=  (/)  <->  E. z 
z  e.  x ) )
115, 10mpbid 147 . . . . . 6  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  E. z 
z  e.  x )
12 inteximm 4193 . . . . . 6  |-  ( E. z  z  e.  x  ->  |^| x  e.  _V )
1311, 12syl 14 . . . . 5  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  |^| x  e.  _V )
143, 13eqeltrd 2282 . . . 4  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  A  e.  _V )
1514rexlimiva 2618 . . 3  |-  ( E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x  ->  A  e.  _V )
1615a1i 9 . 2  |-  ( B  e.  V  ->  ( E. x  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x  ->  A  e.  _V ) )
17 elfi 7073 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
18 vprc 4176 . . . . . . . . . . 11  |-  -.  _V  e.  _V
19 elsni 3651 . . . . . . . . . . . . . 14  |-  ( x  e.  { (/) }  ->  x  =  (/) )
2019inteqd 3890 . . . . . . . . . . . . 13  |-  ( x  e.  { (/) }  ->  |^| x  =  |^| (/) )
21 int0 3899 . . . . . . . . . . . . 13  |-  |^| (/)  =  _V
2220, 21eqtrdi 2254 . . . . . . . . . . . 12  |-  ( x  e.  { (/) }  ->  |^| x  =  _V )
2322eleq1d 2274 . . . . . . . . . . 11  |-  ( x  e.  { (/) }  ->  (
|^| x  e.  _V  <->  _V  e.  _V ) )
2418, 23mtbiri 677 . . . . . . . . . 10  |-  ( x  e.  { (/) }  ->  -. 
|^| x  e.  _V )
25 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  A  =  |^| x )
26 simpll 527 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  A  e.  _V )
2725, 26eqeltrrd 2283 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  |^| x  e.  _V )
2824, 27nsyl3 627 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  -.  x  e.  { (/) } )
2928biantrud 304 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  (
x  e.  ( ~P B  i^i  Fin )  <->  ( x  e.  ( ~P B  i^i  Fin )  /\  -.  x  e.  { (/)
} ) ) )
30 eldif 3175 . . . . . . . 8  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  <->  ( x  e.  ( ~P B  i^i  Fin )  /\  -.  x  e.  { (/) } ) )
3129, 30bitr4di 198 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  (
x  e.  ( ~P B  i^i  Fin )  <->  x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) ) )
3231pm5.32da 452 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( ( A  = 
|^| x  /\  x  e.  ( ~P B  i^i  Fin ) )  <->  ( A  =  |^| x  /\  x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) ) ) )
33 ancom 266 . . . . . 6  |-  ( ( x  e.  ( ~P B  i^i  Fin )  /\  A  =  |^| x )  <->  ( A  =  |^| x  /\  x  e.  ( ~P B  i^i  Fin ) ) )
34 ancom 266 . . . . . 6  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  <->  ( A  =  |^| x  /\  x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) ) )
3532, 33, 343bitr4g 223 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( ( x  e.  ( ~P B  i^i  Fin )  /\  A  = 
|^| x )  <->  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} )  /\  A  =  |^| x ) ) )
3635rexbidv2 2509 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x 
<->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
3717, 36bitrd 188 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
3837expcom 116 . 2  |-  ( B  e.  V  ->  ( A  e.  _V  ->  ( A  e.  ( fi
`  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) ) )
392, 16, 38pm5.21ndd 707 1  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176    =/= wne 2376   E.wrex 2485   _Vcvv 2772    \ cdif 3163    i^i cin 3165   (/)c0 3460   ~Pcpw 3616   {csn 3633   |^|cint 3885   ` cfv 5271   Fincfn 6827   ficfi 7070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6620  df-en 6828  df-fin 6830  df-fi 7071
This theorem is referenced by:  fiuni  7080  fifo  7082
  Copyright terms: Public domain W3C validator