| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfi2 | Unicode version | ||
| Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| elfi2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | simpr 110 |
. . . . 5
| |
| 4 | eldifsni 3796 |
. . . . . . . 8
| |
| 5 | 4 | adantr 276 |
. . . . . . 7
|
| 6 | eldifi 3326 |
. . . . . . . . . 10
| |
| 7 | 6 | elin2d 3394 |
. . . . . . . . 9
|
| 8 | 7 | adantr 276 |
. . . . . . . 8
|
| 9 | fin0 7043 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
|
| 11 | 5, 10 | mpbid 147 |
. . . . . 6
|
| 12 | inteximm 4232 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | 3, 13 | eqeltrd 2306 |
. . . 4
|
| 15 | 14 | rexlimiva 2643 |
. . 3
|
| 16 | 15 | a1i 9 |
. 2
|
| 17 | elfi 7134 |
. . . 4
| |
| 18 | vprc 4215 |
. . . . . . . . . . 11
| |
| 19 | elsni 3684 |
. . . . . . . . . . . . . 14
| |
| 20 | 19 | inteqd 3927 |
. . . . . . . . . . . . 13
|
| 21 | int0 3936 |
. . . . . . . . . . . . 13
| |
| 22 | 20, 21 | eqtrdi 2278 |
. . . . . . . . . . . 12
|
| 23 | 22 | eleq1d 2298 |
. . . . . . . . . . 11
|
| 24 | 18, 23 | mtbiri 679 |
. . . . . . . . . 10
|
| 25 | simpr 110 |
. . . . . . . . . . 11
| |
| 26 | simpll 527 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | eqeltrrd 2307 |
. . . . . . . . . 10
|
| 28 | 24, 27 | nsyl3 629 |
. . . . . . . . 9
|
| 29 | 28 | biantrud 304 |
. . . . . . . 8
|
| 30 | eldif 3206 |
. . . . . . . 8
| |
| 31 | 29, 30 | bitr4di 198 |
. . . . . . 7
|
| 32 | 31 | pm5.32da 452 |
. . . . . 6
|
| 33 | ancom 266 |
. . . . . 6
| |
| 34 | ancom 266 |
. . . . . 6
| |
| 35 | 32, 33, 34 | 3bitr4g 223 |
. . . . 5
|
| 36 | 35 | rexbidv2 2533 |
. . . 4
|
| 37 | 17, 36 | bitrd 188 |
. . 3
|
| 38 | 37 | expcom 116 |
. 2
|
| 39 | 2, 16, 38 | pm5.21ndd 710 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-er 6678 df-en 6886 df-fin 6888 df-fi 7132 |
| This theorem is referenced by: fiuni 7141 fifo 7143 |
| Copyright terms: Public domain | W3C validator |