ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfi2 Unicode version

Theorem elfi2 6860
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
elfi2  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) )
Distinct variable groups:    x, A    x, B    x, V

Proof of Theorem elfi2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2697 . . 3  |-  ( A  e.  ( fi `  B )  ->  A  e.  _V )
21a1i 9 . 2  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  ->  A  e.  _V ) )
3 simpr 109 . . . . 5  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  A  =  |^| x )
4 eldifsni 3652 . . . . . . . 8  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  =/=  (/) )
54adantr 274 . . . . . . 7  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  x  =/=  (/) )
6 eldifi 3198 . . . . . . . . . 10  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  e.  ( ~P B  i^i  Fin ) )
76elin2d 3266 . . . . . . . . 9  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  e.  Fin )
87adantr 274 . . . . . . . 8  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  x  e.  Fin )
9 fin0 6779 . . . . . . . 8  |-  ( x  e.  Fin  ->  (
x  =/=  (/)  <->  E. z 
z  e.  x ) )
108, 9syl 14 . . . . . . 7  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  (
x  =/=  (/)  <->  E. z 
z  e.  x ) )
115, 10mpbid 146 . . . . . 6  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  E. z 
z  e.  x )
12 inteximm 4074 . . . . . 6  |-  ( E. z  z  e.  x  ->  |^| x  e.  _V )
1311, 12syl 14 . . . . 5  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  |^| x  e.  _V )
143, 13eqeltrd 2216 . . . 4  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  A  e.  _V )
1514rexlimiva 2544 . . 3  |-  ( E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x  ->  A  e.  _V )
1615a1i 9 . 2  |-  ( B  e.  V  ->  ( E. x  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x  ->  A  e.  _V ) )
17 elfi 6859 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
18 vprc 4060 . . . . . . . . . . 11  |-  -.  _V  e.  _V
19 elsni 3545 . . . . . . . . . . . . . 14  |-  ( x  e.  { (/) }  ->  x  =  (/) )
2019inteqd 3776 . . . . . . . . . . . . 13  |-  ( x  e.  { (/) }  ->  |^| x  =  |^| (/) )
21 int0 3785 . . . . . . . . . . . . 13  |-  |^| (/)  =  _V
2220, 21syl6eq 2188 . . . . . . . . . . . 12  |-  ( x  e.  { (/) }  ->  |^| x  =  _V )
2322eleq1d 2208 . . . . . . . . . . 11  |-  ( x  e.  { (/) }  ->  (
|^| x  e.  _V  <->  _V  e.  _V ) )
2418, 23mtbiri 664 . . . . . . . . . 10  |-  ( x  e.  { (/) }  ->  -. 
|^| x  e.  _V )
25 simpr 109 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  A  =  |^| x )
26 simpll 518 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  A  e.  _V )
2725, 26eqeltrrd 2217 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  |^| x  e.  _V )
2824, 27nsyl3 615 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  -.  x  e.  { (/) } )
2928biantrud 302 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  (
x  e.  ( ~P B  i^i  Fin )  <->  ( x  e.  ( ~P B  i^i  Fin )  /\  -.  x  e.  { (/)
} ) ) )
30 eldif 3080 . . . . . . . 8  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  <->  ( x  e.  ( ~P B  i^i  Fin )  /\  -.  x  e.  { (/) } ) )
3129, 30syl6bbr 197 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  (
x  e.  ( ~P B  i^i  Fin )  <->  x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) ) )
3231pm5.32da 447 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( ( A  = 
|^| x  /\  x  e.  ( ~P B  i^i  Fin ) )  <->  ( A  =  |^| x  /\  x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) ) ) )
33 ancom 264 . . . . . 6  |-  ( ( x  e.  ( ~P B  i^i  Fin )  /\  A  =  |^| x )  <->  ( A  =  |^| x  /\  x  e.  ( ~P B  i^i  Fin ) ) )
34 ancom 264 . . . . . 6  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  <->  ( A  =  |^| x  /\  x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) ) )
3532, 33, 343bitr4g 222 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( ( x  e.  ( ~P B  i^i  Fin )  /\  A  = 
|^| x )  <->  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} )  /\  A  =  |^| x ) ) )
3635rexbidv2 2440 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x 
<->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
3717, 36bitrd 187 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
3837expcom 115 . 2  |-  ( B  e.  V  ->  ( A  e.  _V  ->  ( A  e.  ( fi
`  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) ) )
392, 16, 38pm5.21ndd 694 1  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480    =/= wne 2308   E.wrex 2417   _Vcvv 2686    \ cdif 3068    i^i cin 3070   (/)c0 3363   ~Pcpw 3510   {csn 3527   |^|cint 3771   ` cfv 5123   Fincfn 6634   ficfi 6856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-er 6429  df-en 6635  df-fin 6637  df-fi 6857
This theorem is referenced by:  fiuni  6866  fifo  6868
  Copyright terms: Public domain W3C validator