| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfi2 | Unicode version | ||
| Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| elfi2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | simpr 110 |
. . . . 5
| |
| 4 | eldifsni 3762 |
. . . . . . . 8
| |
| 5 | 4 | adantr 276 |
. . . . . . 7
|
| 6 | eldifi 3295 |
. . . . . . . . . 10
| |
| 7 | 6 | elin2d 3363 |
. . . . . . . . 9
|
| 8 | 7 | adantr 276 |
. . . . . . . 8
|
| 9 | fin0 6982 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
|
| 11 | 5, 10 | mpbid 147 |
. . . . . 6
|
| 12 | inteximm 4193 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | 3, 13 | eqeltrd 2282 |
. . . 4
|
| 15 | 14 | rexlimiva 2618 |
. . 3
|
| 16 | 15 | a1i 9 |
. 2
|
| 17 | elfi 7073 |
. . . 4
| |
| 18 | vprc 4176 |
. . . . . . . . . . 11
| |
| 19 | elsni 3651 |
. . . . . . . . . . . . . 14
| |
| 20 | 19 | inteqd 3890 |
. . . . . . . . . . . . 13
|
| 21 | int0 3899 |
. . . . . . . . . . . . 13
| |
| 22 | 20, 21 | eqtrdi 2254 |
. . . . . . . . . . . 12
|
| 23 | 22 | eleq1d 2274 |
. . . . . . . . . . 11
|
| 24 | 18, 23 | mtbiri 677 |
. . . . . . . . . 10
|
| 25 | simpr 110 |
. . . . . . . . . . 11
| |
| 26 | simpll 527 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | eqeltrrd 2283 |
. . . . . . . . . 10
|
| 28 | 24, 27 | nsyl3 627 |
. . . . . . . . 9
|
| 29 | 28 | biantrud 304 |
. . . . . . . 8
|
| 30 | eldif 3175 |
. . . . . . . 8
| |
| 31 | 29, 30 | bitr4di 198 |
. . . . . . 7
|
| 32 | 31 | pm5.32da 452 |
. . . . . 6
|
| 33 | ancom 266 |
. . . . . 6
| |
| 34 | ancom 266 |
. . . . . 6
| |
| 35 | 32, 33, 34 | 3bitr4g 223 |
. . . . 5
|
| 36 | 35 | rexbidv2 2509 |
. . . 4
|
| 37 | 17, 36 | bitrd 188 |
. . 3
|
| 38 | 37 | expcom 116 |
. 2
|
| 39 | 2, 16, 38 | pm5.21ndd 707 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-er 6620 df-en 6828 df-fin 6830 df-fi 7071 |
| This theorem is referenced by: fiuni 7080 fifo 7082 |
| Copyright terms: Public domain | W3C validator |