HomeHome Intuitionistic Logic Explorer
Theorem List (p. 70 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6901-7000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremensn1 6901 A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
 |-  A  e.  _V   =>    |-  { A }  ~~  1o
 
Theoremensn1g 6902 A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
 |-  ( A  e.  V  ->  { A }  ~~  1o )
 
Theoremenpr1g 6903  { A ,  A } has only one element. (Contributed by FL, 15-Feb-2010.)
 |-  ( A  e.  V  ->  { A ,  A }  ~~  1o )
 
Theoremen1 6904* A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
 |-  ( A  ~~  1o  <->  E. x  A  =  { x } )
 
Theoremen1bg 6905 A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.)
 |-  ( A  e.  V  ->  ( A  ~~  1o  <->  A  =  { U. A }
 ) )
 
Theoremreuen1 6906* Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
 |-  ( E! x  e.  A  ph  <->  { x  e.  A  |  ph }  ~~  1o )
 
Theoremeuen1 6907 Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
 |-  ( E! x ph  <->  { x  |  ph }  ~~  1o )
 
Theoremeuen1b 6908* Two ways to express " A has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.)
 |-  ( A  ~~  1o  <->  E! x  x  e.  A )
 
Theoremen1uniel 6909 A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.)
 |-  ( S  ~~  1o  ->  U. S  e.  S )
 
Theoremen1m 6910* A set with one element is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
 |-  ( A  ~~  1o  ->  E. x  x  e.  A )
 
Theorem2dom 6911* A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
 |-  ( 2o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
 
Theoremfundmen 6912 A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  F  e.  _V   =>    |-  ( Fun  F  ->  dom  F  ~~  F )
 
Theoremfundmeng 6913 A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
 |-  ( ( F  e.  V  /\  Fun  F )  ->  dom  F  ~~  F )
 
Theoremcnven 6914 A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  ( ( Rel  A  /\  A  e.  V ) 
 ->  A  ~~  `' A )
 
Theoremcnvct 6915 If a set is dominated by  om, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.)
 |-  ( A  ~<_  om  ->  `' A  ~<_  om )
 
Theoremfndmeng 6916 A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )
 
Theoremmapsnen 6917 Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  ^m  { B } )  ~~  A
 
Theoremmap1 6918 Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
 |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )
 
Theoremen2sn 6919 Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A }  ~~  { B } )
 
Theoremsnfig 6920 A singleton is finite. For the proper class case, see snprc 3703. (Contributed by Jim Kingdon, 13-Apr-2020.)
 |-  ( A  e.  V  ->  { A }  e.  Fin )
 
Theoremfiprc 6921 The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
 |- 
 Fin  e/  _V
 
Theoremunen 6922 Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( ( A 
 ~~  B  /\  C  ~~  D )  /\  (
 ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D ) )
 
Theoremen2prd 6923 Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  D  e.  Y )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  C  =/=  D )   =>    |-  ( ph  ->  { A ,  B }  ~~  { C ,  D } )
 
Theoremrex2dom 6924* A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.)
 |-  ( ( A  e.  V  /\  E. x  e.  A  E. y  e.  A  x  =/=  y
 )  ->  2o  ~<_  A )
 
Theoremenpr2d 6925 A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  -.  A  =  B )   =>    |-  ( ph  ->  { A ,  B }  ~~  2o )
 
Theoremen2 6926* A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |-  ( A  ~~  2o  ->  E. x E. y  A  =  { x ,  y } )
 
Theoremen2m 6927* A set with two elements is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
 |-  ( A  ~~  2o  ->  E. x  x  e.  A )
 
Theoremssct 6928 A subset of a set dominated by 
om is dominated by 
om. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  ( ( A  C_  B  /\  B  ~<_  om )  ->  A  ~<_  om )
 
Theorem1domsn 6929 A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.)
 |- 
 { A }  ~<_  1o
 
Theoremenm 6930* A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
 |-  ( ( A  ~~  B  /\  E. x  x  e.  A )  ->  E. y  y  e.  B )
 
Theoremxpsnen 6931 A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  X.  { B } )  ~~  A
 
Theoremxpsneng 6932 A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  { B } )  ~~  A )
 
Theoremxp1en 6933 One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  V  ->  ( A  X.  1o )  ~~  A )
 
Theoremendisj 6934* Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 E. x E. y
 ( ( x  ~~  A  /\  y  ~~  B )  /\  ( x  i^i  y )  =  (/) )
 
Theoremxpcomf1o 6935* The canonical bijection from  ( A  X.  B
) to  ( B  X.  A ). (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  F  =  ( x  e.  ( A  X.  B )  |->  U. `' { x } )   =>    |-  F : ( A  X.  B ) -1-1-onto-> ( B  X.  A )
 
Theoremxpcomco 6936* Composition with the bijection of xpcomf1o 6935 swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015.)
 |-  F  =  ( x  e.  ( A  X.  B )  |->  U. `' { x } )   &    |-  G  =  ( y  e.  B ,  z  e.  A  |->  C )   =>    |-  ( G  o.  F )  =  ( z  e.  A ,  y  e.  B  |->  C )
 
Theoremxpcomen 6937 Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  X.  B )  ~~  ( B  X.  A )
 
Theoremxpcomeng 6938 Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B )  ~~  ( B  X.  A ) )
 
Theoremxpsnen2g 6939 A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B )
 
Theoremxpassen 6940 Associative law for equinumerosity of Cartesian product. Proposition 4.22(e) of [Mendelson] p. 254. (Contributed by NM, 22-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  (
 ( A  X.  B )  X.  C )  ~~  ( A  X.  ( B  X.  C ) )
 
Theoremxpdom2 6941 Dominance law for Cartesian product. Proposition 10.33(2) of [TakeutiZaring] p. 92. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  C  e.  _V   =>    |-  ( A  ~<_  B  ->  ( C  X.  A )  ~<_  ( C  X.  B ) )
 
Theoremxpdom2g 6942 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( C  e.  V  /\  A  ~<_  B ) 
 ->  ( C  X.  A ) 
 ~<_  ( C  X.  B ) )
 
Theoremxpdom1g 6943 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( C  e.  V  /\  A  ~<_  B ) 
 ->  ( A  X.  C ) 
 ~<_  ( B  X.  C ) )
 
Theoremxpdom3m 6944* A set is dominated by its Cartesian product with an inhabited set. Exercise 6 of [Suppes] p. 98. (Contributed by Jim Kingdon, 15-Apr-2020.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  E. x  x  e.  B )  ->  A  ~<_  ( A  X.  B ) )
 
Theoremxpdom1 6945 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by NM, 29-Mar-2006.) (Revised by Mario Carneiro, 7-May-2015.)
 |-  C  e.  _V   =>    |-  ( A  ~<_  B  ->  ( A  X.  C )  ~<_  ( B  X.  C ) )
 
Theorempw2f1odclem 6946* Lemma for pw2f1odc 6947. (Contributed by Mario Carneiro, 6-Oct-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  W )   &    |-  ( ph  ->  B  =/=  C )   &    |-  ( ph  ->  A. p  e.  A  A. q  e.  ~P  ADECID  p  e.  q )   =>    |-  ( ph  ->  (
 ( S  e.  ~P A  /\  G  =  ( z  e.  A  |->  if ( z  e.  S ,  C ,  B ) ) )  <->  ( G  e.  ( { B ,  C }  ^m  A )  /\  S  =  ( `' G " { C }
 ) ) ) )
 
Theorempw2f1odc 6947* The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  W )   &    |-  ( ph  ->  B  =/=  C )   &    |-  ( ph  ->  A. p  e.  A  A. q  e.  ~P  ADECID  p  e.  q )   &    |-  F  =  ( x  e.  ~P A  |->  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) )   =>    |-  ( ph  ->  F : ~P A -1-1-onto-> ( { B ,  C }  ^m  A ) )
 
Theoremfopwdom 6948 Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( F  e.  _V 
 /\  F : A -onto-> B )  ->  ~P B  ~<_  ~P A )
 
Theorem0domg 6949 Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  V  -> 
 (/)  ~<_  A )
 
Theoremdom0 6950 A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.)
 |-  ( A  ~<_  (/)  <->  A  =  (/) )
 
Theorem0dom 6951 Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   =>    |-  (/)  ~<_  A
 
Theoremenen1 6952 Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.)
 |-  ( A  ~~  B  ->  ( A  ~~  C  <->  B 
 ~~  C ) )
 
Theoremenen2 6953 Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.)
 |-  ( A  ~~  B  ->  ( C  ~~  A  <->  C 
 ~~  B ) )
 
Theoremdomen1 6954 Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
 |-  ( A  ~~  B  ->  ( A  ~<_  C  <->  B  ~<_  C )
 )
 
Theoremdomen2 6955 Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
 |-  ( A  ~~  B  ->  ( C  ~<_  A  <->  C  ~<_  B )
 )
 
2.6.29  Equinumerosity (cont.)
 
Theoremxpf1o 6956* Construct a bijection on a Cartesian product given bijections on the factors. (Contributed by Mario Carneiro, 30-May-2015.)
 |-  ( ph  ->  ( x  e.  A  |->  X ) : A -1-1-onto-> B )   &    |-  ( ph  ->  ( y  e.  C  |->  Y ) : C -1-1-onto-> D )   =>    |-  ( ph  ->  ( x  e.  A ,  y  e.  C  |->  <. X ,  Y >. ) : ( A  X.  C ) -1-1-onto-> ( B  X.  D ) )
 
Theoremxpen 6957 Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.)
 |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  ( A  X.  C )  ~~  ( B  X.  D ) )
 
Theoremmapen 6958 Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  ( A  ^m  C )  ~~  ( B 
 ^m  D ) )
 
Theoremmapdom1g 6959 Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.)
 |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( A  ^m  C ) 
 ~<_  ( B  ^m  C ) )
 
Theoremmapxpen 6960 Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( ( A  ^m  B )  ^m  C ) 
 ~~  ( A  ^m  ( B  X.  C ) ) )
 
Theoremxpmapenlem 6961* Lemma for xpmapen 6962. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  =  ( z  e.  C  |->  ( 1st `  ( x `  z ) ) )   &    |-  R  =  ( z  e.  C  |->  ( 2nd `  ( x `  z ) ) )   &    |-  S  =  ( z  e.  C  |->  <.
 ( ( 1st `  y
 ) `  z ) ,  ( ( 2nd `  y
 ) `  z ) >. )   =>    |-  ( ( A  X.  B )  ^m  C ) 
 ~~  ( ( A 
 ^m  C )  X.  ( B  ^m  C ) )
 
Theoremxpmapen 6962 Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  (
 ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )
 
Theoremssenen 6963* Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
 |-  ( A  ~~  B  ->  { x  |  ( x  C_  A  /\  x  ~~  C ) }  ~~  { x  |  ( x  C_  B  /\  x  ~~  C ) }
 )
 
2.6.30  Pigeonhole Principle
 
Theoremphplem1 6964 Lemma for Pigeonhole Principle. If we join a natural number to itself minus an element, we end up with its successor minus the same element. (Contributed by NM, 25-May-1998.)
 |-  ( ( A  e.  om 
 /\  B  e.  A )  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc  A  \  { B } )
 )
 
Theoremphplem2 6965 Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( A  e.  om 
 /\  B  e.  A )  ->  A  ~~  ( suc  A  \  { B } ) )
 
Theoremphplem3 6966 Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. For a version without the redundant hypotheses, see phplem3g 6968. (Contributed by NM, 26-May-1998.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( A  e.  om 
 /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )
 
Theoremphplem4 6967 Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( suc  A  ~~ 
 suc  B  ->  A  ~~  B ) )
 
Theoremphplem3g 6968 A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6966 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )
 
Theoremnneneq 6969 Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  ~~  B 
 <->  A  =  B ) )
 
Theoremphp5 6970 A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.)
 |-  ( A  e.  om  ->  -.  A  ~~  suc  A )
 
Theoremsnnen2og 6971 A singleton  { A } is never equinumerous with the ordinal number 2. If  A is a proper class, see snnen2oprc 6972. (Contributed by Jim Kingdon, 1-Sep-2021.)
 |-  ( A  e.  V  ->  -.  { A }  ~~  2o )
 
Theoremsnnen2oprc 6972 A singleton  { A } is never equinumerous with the ordinal number 2. If  A is a set, see snnen2og 6971. (Contributed by Jim Kingdon, 1-Sep-2021.)
 |-  ( -.  A  e.  _V 
 ->  -.  { A }  ~~  2o )
 
Theorem1nen2 6973 One and two are not equinumerous. (Contributed by Jim Kingdon, 25-Jan-2022.)
 |- 
 -.  1o  ~~  2o
 
Theoremphplem4dom 6974 Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( suc  A  ~<_  suc  B  ->  A  ~<_  B ) )
 
Theoremphp5dom 6975 A natural number does not dominate its successor. (Contributed by Jim Kingdon, 1-Sep-2021.)
 |-  ( A  e.  om  ->  -.  suc  A  ~<_  A )
 
Theoremnndomo 6976 Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  ~<_  B  <->  A  C_  B ) )
 
Theoremphpm 6977* Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. By "proper subset" here we mean that there is an element which is in the natural number and not in the subset, or in symbols  E. x x  e.  ( A  \  B
) (which is stronger than not being equal in the absence of excluded middle). Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 6964 through phplem4 6967, nneneq 6969, and this final piece of the proof. (Contributed by NM, 29-May-1998.)
 |-  ( ( A  e.  om 
 /\  B  C_  A  /\  E. x  x  e.  ( A  \  B ) )  ->  -.  A  ~~  B )
 
Theoremphpelm 6978 Pigeonhole Principle. A natural number is not equinumerous to an element of itself. (Contributed by Jim Kingdon, 6-Sep-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  A )  ->  -.  A  ~~  B )
 
Theoremphplem4on 6979 Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.)
 |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( suc  A  ~~ 
 suc  B  ->  A  ~~  B ) )
 
2.6.31  Finite sets
 
Theoremfict 6980 A finite set is dominated by  om. Also see finct 7233. (Contributed by Thierry Arnoux, 27-Mar-2018.)
 |-  ( A  e.  Fin  ->  A 
 ~<_  om )
 
Theoremfidceq 6981 Equality of members of a finite set is decidable. This may be counterintuitive: cannot any two sets be elements of a finite set? Well, to show, for example, that  { B ,  C } is finite would require showing it is equinumerous to  1o or to  2o but to show that you'd need to know  B  =  C or  -.  B  =  C, respectively. (Contributed by Jim Kingdon, 5-Sep-2021.)
 |-  ( ( A  e.  Fin  /\  B  e.  A  /\  C  e.  A )  -> DECID  B  =  C )
 
Theoremfidifsnen 6982 All decrements of a finite set are equinumerous. (Contributed by Jim Kingdon, 9-Sep-2021.)
 |-  ( ( X  e.  Fin  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { B }
 ) )
 
Theoremfidifsnid 6983 If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3785 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.)
 |-  ( ( A  e.  Fin  /\  B  e.  A ) 
 ->  ( ( A  \  { B } )  u. 
 { B } )  =  A )
 
Theoremnnfi 6984 Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  ( A  e.  om  ->  A  e.  Fin )
 
Theoremenfi 6985 Equinumerous sets have the same finiteness. (Contributed by NM, 22-Aug-2008.)
 |-  ( A  ~~  B  ->  ( A  e.  Fin  <->  B  e.  Fin ) )
 
Theoremenfii 6986 A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( ( B  e.  Fin  /\  A  ~~  B ) 
 ->  A  e.  Fin )
 
Theoremssfilem 6987* Lemma for ssfiexmid 6988. (Contributed by Jim Kingdon, 3-Feb-2022.)
 |- 
 { z  e.  { (/)
 }  |  ph }  e.  Fin   =>    |-  ( ph  \/  -.  ph )
 
Theoremssfiexmid 6988* If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.)
 |- 
 A. x A. y
 ( ( x  e. 
 Fin  /\  y  C_  x )  ->  y  e.  Fin )   =>    |-  ( ph  \/  -.  ph )
 
Theoreminfiexmid 6989* If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
 |-  ( x  e.  Fin  ->  ( x  i^i  y )  e.  Fin )   =>    |-  ( ph  \/  -.  ph )
 
Theoremdomfiexmid 6990* If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
 |-  ( ( x  e. 
 Fin  /\  y  ~<_  x ) 
 ->  y  e.  Fin )   =>    |-  ( ph  \/  -.  ph )
 
Theoremdif1en 6991 If a set  A is equinumerous to the successor of a natural number  M, then  A with an element removed is equinumerous to  M. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
 |-  ( ( M  e.  om 
 /\  A  ~~  suc  M 
 /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M )
 
Theoremdif1enen 6992 Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A 
 ~~  B )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  D  e.  B )   =>    |-  ( ph  ->  ( A  \  { C }
 )  ~~  ( B  \  { D } )
 )
 
Theoremfiunsnnn 6993 Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.)
 |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  /\  ( N  e.  om  /\  A  ~~  N ) )  ->  ( A  u.  { B } )  ~~  suc  N )
 
Theoremphp5fin 6994 A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.)
 |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  -.  A  ~~  ( A  u.  { B }
 ) )
 
Theoremfisbth 6995 Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.)
 |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B )
 
Theorem0fin 6996 The empty set is finite. (Contributed by FL, 14-Jul-2008.)
 |-  (/)  e.  Fin
 
Theoremfin0 6997* A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
 |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
 
Theoremfin0or 6998* A finite set is either empty or inhabited. (Contributed by Jim Kingdon, 30-Sep-2021.)
 |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  E. x  x  e.  A ) )
 
Theoremdiffitest 6999* If subtracting any set from a finite set gives a finite set, any proposition of the form  -.  ph is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove  A  e.  Fin  ->  ( A  \  B
)  e.  Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
 |- 
 A. a  e.  Fin  A. b ( a  \  b )  e.  Fin   =>    |-  ( -.  ph  \/  -.  -.  ph )
 
Theoremfindcard 7000* Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( x  =  (/)  ->  ( ph  <->  ps ) )   &    |-  ( x  =  ( y  \  { z } )  ->  ( ph  <->  ch ) )   &    |-  ( x  =  y  ->  (
 ph 
 <-> 
 th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  Fin  ->  (
 A. z  e.  y  ch  ->  th ) )   =>    |-  ( A  e.  Fin 
 ->  ta )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >