| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fival | Unicode version | ||
| Description: The set of all the finite
intersections of the elements of |
| Ref | Expression |
|---|---|
| fival |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fi 7097 |
. 2
| |
| 2 | pweq 3629 |
. . . . 5
| |
| 3 | 2 | ineq1d 3381 |
. . . 4
|
| 4 | 3 | rexeqdv 2712 |
. . 3
|
| 5 | 4 | abbidv 2325 |
. 2
|
| 6 | elex 2788 |
. 2
| |
| 7 | simpr 110 |
. . . . . . 7
| |
| 8 | elinel1 3367 |
. . . . . . . . 9
| |
| 9 | 8 | elpwid 3637 |
. . . . . . . 8
|
| 10 | eqvisset 2787 |
. . . . . . . . . . . 12
| |
| 11 | intexr 4210 |
. . . . . . . . . . . 12
| |
| 12 | 10, 11 | syl 14 |
. . . . . . . . . . 11
|
| 13 | 12 | adantl 277 |
. . . . . . . . . 10
|
| 14 | 13 | neneqd 2399 |
. . . . . . . . 9
|
| 15 | elinel2 3368 |
. . . . . . . . . . 11
| |
| 16 | 15 | adantr 276 |
. . . . . . . . . 10
|
| 17 | fin0or 7009 |
. . . . . . . . . . 11
| |
| 18 | 17 | orcomd 731 |
. . . . . . . . . 10
|
| 19 | 16, 18 | syl 14 |
. . . . . . . . 9
|
| 20 | 14, 19 | ecased 1362 |
. . . . . . . 8
|
| 21 | intssuni2m 3923 |
. . . . . . . 8
| |
| 22 | 9, 20, 21 | syl2an2r 595 |
. . . . . . 7
|
| 23 | 7, 22 | eqsstrd 3237 |
. . . . . 6
|
| 24 | velpw 3633 |
. . . . . 6
| |
| 25 | 23, 24 | sylibr 134 |
. . . . 5
|
| 26 | 25 | rexlimiva 2620 |
. . . 4
|
| 27 | 26 | abssi 3276 |
. . 3
|
| 28 | uniexg 4504 |
. . . 4
| |
| 29 | 28 | pwexd 4241 |
. . 3
|
| 30 | ssexg 4199 |
. . 3
| |
| 31 | 27, 29, 30 | sylancr 414 |
. 2
|
| 32 | 1, 5, 6, 31 | fvmptd3 5696 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-er 6643 df-en 6851 df-fin 6853 df-fi 7097 |
| This theorem is referenced by: elfi 7099 fi0 7103 |
| Copyright terms: Public domain | W3C validator |