ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fival Unicode version

Theorem fival 6824
Description: The set of all the finite intersections of the elements of  A. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fival  |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
Distinct variable groups:    x, y, A   
x, V
Allowed substitution hint:    V( y)

Proof of Theorem fival
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-fi 6823 . 2  |-  fi  =  ( z  e.  _V  |->  { y  |  E. x  e.  ( ~P z  i^i  Fin ) y  =  |^| x }
)
2 pweq 3481 . . . . 5  |-  ( z  =  A  ->  ~P z  =  ~P A
)
32ineq1d 3244 . . . 4  |-  ( z  =  A  ->  ( ~P z  i^i  Fin )  =  ( ~P A  i^i  Fin ) )
43rexeqdv 2608 . . 3  |-  ( z  =  A  ->  ( E. x  e.  ( ~P z  i^i  Fin )
y  =  |^| x  <->  E. x  e.  ( ~P A  i^i  Fin )
y  =  |^| x
) )
54abbidv 2233 . 2  |-  ( z  =  A  ->  { y  |  E. x  e.  ( ~P z  i^i 
Fin ) y  = 
|^| x }  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
6 elex 2669 . 2  |-  ( A  e.  V  ->  A  e.  _V )
7 simpr 109 . . . . . . 7  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  =  |^| x )
8 elinel1 3230 . . . . . . . . 9  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  ~P A )
98elpwid 3489 . . . . . . . 8  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  C_  A )
10 eqvisset 2668 . . . . . . . . . . . 12  |-  ( y  =  |^| x  ->  |^| x  e.  _V )
11 intexr 4043 . . . . . . . . . . . 12  |-  ( |^| x  e.  _V  ->  x  =/=  (/) )
1210, 11syl 14 . . . . . . . . . . 11  |-  ( y  =  |^| x  ->  x  =/=  (/) )
1312adantl 273 . . . . . . . . . 10  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  x  =/=  (/) )
1413neneqd 2304 . . . . . . . . 9  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  -.  x  =  (/) )
15 elinel2 3231 . . . . . . . . . . 11  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  Fin )
1615adantr 272 . . . . . . . . . 10  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  x  e.  Fin )
17 fin0or 6746 . . . . . . . . . . 11  |-  ( x  e.  Fin  ->  (
x  =  (/)  \/  E. z  z  e.  x
) )
1817orcomd 701 . . . . . . . . . 10  |-  ( x  e.  Fin  ->  ( E. z  z  e.  x  \/  x  =  (/) ) )
1916, 18syl 14 . . . . . . . . 9  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  ( E. z  z  e.  x  \/  x  =  (/) ) )
2014, 19ecased 1310 . . . . . . . 8  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  E. z 
z  e.  x )
21 intssuni2m 3763 . . . . . . . 8  |-  ( ( x  C_  A  /\  E. z  z  e.  x
)  ->  |^| x  C_  U. A )
229, 20, 21syl2an2r 567 . . . . . . 7  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  |^| x  C_ 
U. A )
237, 22eqsstrd 3101 . . . . . 6  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  C_ 
U. A )
24 velpw 3485 . . . . . 6  |-  ( y  e.  ~P U. A  <->  y 
C_  U. A )
2523, 24sylibr 133 . . . . 5  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  e.  ~P U. A )
2625rexlimiva 2519 . . . 4  |-  ( E. x  e.  ( ~P A  i^i  Fin )
y  =  |^| x  ->  y  e.  ~P U. A )
2726abssi 3140 . . 3  |-  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  C_  ~P U. A
28 uniexg 4329 . . . 4  |-  ( A  e.  V  ->  U. A  e.  _V )
2928pwexd 4073 . . 3  |-  ( A  e.  V  ->  ~P U. A  e.  _V )
30 ssexg 4035 . . 3  |-  ( ( { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  C_ 
~P U. A  /\  ~P U. A  e.  _V )  ->  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )
3127, 29, 30sylancr 408 . 2  |-  ( A  e.  V  ->  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )
321, 5, 6, 31fvmptd3 5480 1  |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 680    = wceq 1314   E.wex 1451    e. wcel 1463   {cab 2101    =/= wne 2283   E.wrex 2392   _Vcvv 2658    i^i cin 3038    C_ wss 3039   (/)c0 3331   ~Pcpw 3478   U.cuni 3704   |^|cint 3739   ` cfv 5091   Fincfn 6600   ficfi 6822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-er 6395  df-en 6601  df-fin 6603  df-fi 6823
This theorem is referenced by:  elfi  6825  fi0  6829
  Copyright terms: Public domain W3C validator