Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fival | Unicode version |
Description: The set of all the finite intersections of the elements of . (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fival |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fi 6934 | . 2 | |
2 | pweq 3562 | . . . . 5 | |
3 | 2 | ineq1d 3322 | . . . 4 |
4 | 3 | rexeqdv 2668 | . . 3 |
5 | 4 | abbidv 2284 | . 2 |
6 | elex 2737 | . 2 | |
7 | simpr 109 | . . . . . . 7 | |
8 | elinel1 3308 | . . . . . . . . 9 | |
9 | 8 | elpwid 3570 | . . . . . . . 8 |
10 | eqvisset 2736 | . . . . . . . . . . . 12 | |
11 | intexr 4129 | . . . . . . . . . . . 12 | |
12 | 10, 11 | syl 14 | . . . . . . . . . . 11 |
13 | 12 | adantl 275 | . . . . . . . . . 10 |
14 | 13 | neneqd 2357 | . . . . . . . . 9 |
15 | elinel2 3309 | . . . . . . . . . . 11 | |
16 | 15 | adantr 274 | . . . . . . . . . 10 |
17 | fin0or 6852 | . . . . . . . . . . 11 | |
18 | 17 | orcomd 719 | . . . . . . . . . 10 |
19 | 16, 18 | syl 14 | . . . . . . . . 9 |
20 | 14, 19 | ecased 1339 | . . . . . . . 8 |
21 | intssuni2m 3848 | . . . . . . . 8 | |
22 | 9, 20, 21 | syl2an2r 585 | . . . . . . 7 |
23 | 7, 22 | eqsstrd 3178 | . . . . . 6 |
24 | velpw 3566 | . . . . . 6 | |
25 | 23, 24 | sylibr 133 | . . . . 5 |
26 | 25 | rexlimiva 2578 | . . . 4 |
27 | 26 | abssi 3217 | . . 3 |
28 | uniexg 4417 | . . . 4 | |
29 | 28 | pwexd 4160 | . . 3 |
30 | ssexg 4121 | . . 3 | |
31 | 27, 29, 30 | sylancr 411 | . 2 |
32 | 1, 5, 6, 31 | fvmptd3 5579 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wex 1480 wcel 2136 cab 2151 wne 2336 wrex 2445 cvv 2726 cin 3115 wss 3116 c0 3409 cpw 3559 cuni 3789 cint 3824 cfv 5188 cfn 6706 cfi 6933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 df-fi 6934 |
This theorem is referenced by: elfi 6936 fi0 6940 |
Copyright terms: Public domain | W3C validator |