ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fival Unicode version

Theorem fival 7137
Description: The set of all the finite intersections of the elements of  A. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fival  |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
Distinct variable groups:    x, y, A   
x, V
Allowed substitution hint:    V( y)

Proof of Theorem fival
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-fi 7136 . 2  |-  fi  =  ( z  e.  _V  |->  { y  |  E. x  e.  ( ~P z  i^i  Fin ) y  =  |^| x }
)
2 pweq 3652 . . . . 5  |-  ( z  =  A  ->  ~P z  =  ~P A
)
32ineq1d 3404 . . . 4  |-  ( z  =  A  ->  ( ~P z  i^i  Fin )  =  ( ~P A  i^i  Fin ) )
43rexeqdv 2735 . . 3  |-  ( z  =  A  ->  ( E. x  e.  ( ~P z  i^i  Fin )
y  =  |^| x  <->  E. x  e.  ( ~P A  i^i  Fin )
y  =  |^| x
) )
54abbidv 2347 . 2  |-  ( z  =  A  ->  { y  |  E. x  e.  ( ~P z  i^i 
Fin ) y  = 
|^| x }  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
6 elex 2811 . 2  |-  ( A  e.  V  ->  A  e.  _V )
7 simpr 110 . . . . . . 7  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  =  |^| x )
8 elinel1 3390 . . . . . . . . 9  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  ~P A )
98elpwid 3660 . . . . . . . 8  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  C_  A )
10 eqvisset 2810 . . . . . . . . . . . 12  |-  ( y  =  |^| x  ->  |^| x  e.  _V )
11 intexr 4234 . . . . . . . . . . . 12  |-  ( |^| x  e.  _V  ->  x  =/=  (/) )
1210, 11syl 14 . . . . . . . . . . 11  |-  ( y  =  |^| x  ->  x  =/=  (/) )
1312adantl 277 . . . . . . . . . 10  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  x  =/=  (/) )
1413neneqd 2421 . . . . . . . . 9  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  -.  x  =  (/) )
15 elinel2 3391 . . . . . . . . . . 11  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  Fin )
1615adantr 276 . . . . . . . . . 10  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  x  e.  Fin )
17 fin0or 7048 . . . . . . . . . . 11  |-  ( x  e.  Fin  ->  (
x  =  (/)  \/  E. z  z  e.  x
) )
1817orcomd 734 . . . . . . . . . 10  |-  ( x  e.  Fin  ->  ( E. z  z  e.  x  \/  x  =  (/) ) )
1916, 18syl 14 . . . . . . . . 9  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  ( E. z  z  e.  x  \/  x  =  (/) ) )
2014, 19ecased 1383 . . . . . . . 8  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  E. z 
z  e.  x )
21 intssuni2m 3947 . . . . . . . 8  |-  ( ( x  C_  A  /\  E. z  z  e.  x
)  ->  |^| x  C_  U. A )
229, 20, 21syl2an2r 597 . . . . . . 7  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  |^| x  C_ 
U. A )
237, 22eqsstrd 3260 . . . . . 6  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  C_ 
U. A )
24 velpw 3656 . . . . . 6  |-  ( y  e.  ~P U. A  <->  y 
C_  U. A )
2523, 24sylibr 134 . . . . 5  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  e.  ~P U. A )
2625rexlimiva 2643 . . . 4  |-  ( E. x  e.  ( ~P A  i^i  Fin )
y  =  |^| x  ->  y  e.  ~P U. A )
2726abssi 3299 . . 3  |-  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  C_  ~P U. A
28 uniexg 4530 . . . 4  |-  ( A  e.  V  ->  U. A  e.  _V )
2928pwexd 4265 . . 3  |-  ( A  e.  V  ->  ~P U. A  e.  _V )
30 ssexg 4223 . . 3  |-  ( ( { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  C_ 
~P U. A  /\  ~P U. A  e.  _V )  ->  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )
3127, 29, 30sylancr 414 . 2  |-  ( A  e.  V  ->  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )
321, 5, 6, 31fvmptd3 5728 1  |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215    =/= wne 2400   E.wrex 2509   _Vcvv 2799    i^i cin 3196    C_ wss 3197   (/)c0 3491   ~Pcpw 3649   U.cuni 3888   |^|cint 3923   ` cfv 5318   Fincfn 6887   ficfi 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-er 6680  df-en 6888  df-fin 6890  df-fi 7136
This theorem is referenced by:  elfi  7138  fi0  7142
  Copyright terms: Public domain W3C validator