ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fival Unicode version

Theorem fival 7098
Description: The set of all the finite intersections of the elements of  A. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fival  |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
Distinct variable groups:    x, y, A   
x, V
Allowed substitution hint:    V( y)

Proof of Theorem fival
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-fi 7097 . 2  |-  fi  =  ( z  e.  _V  |->  { y  |  E. x  e.  ( ~P z  i^i  Fin ) y  =  |^| x }
)
2 pweq 3629 . . . . 5  |-  ( z  =  A  ->  ~P z  =  ~P A
)
32ineq1d 3381 . . . 4  |-  ( z  =  A  ->  ( ~P z  i^i  Fin )  =  ( ~P A  i^i  Fin ) )
43rexeqdv 2712 . . 3  |-  ( z  =  A  ->  ( E. x  e.  ( ~P z  i^i  Fin )
y  =  |^| x  <->  E. x  e.  ( ~P A  i^i  Fin )
y  =  |^| x
) )
54abbidv 2325 . 2  |-  ( z  =  A  ->  { y  |  E. x  e.  ( ~P z  i^i 
Fin ) y  = 
|^| x }  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
6 elex 2788 . 2  |-  ( A  e.  V  ->  A  e.  _V )
7 simpr 110 . . . . . . 7  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  =  |^| x )
8 elinel1 3367 . . . . . . . . 9  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  ~P A )
98elpwid 3637 . . . . . . . 8  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  C_  A )
10 eqvisset 2787 . . . . . . . . . . . 12  |-  ( y  =  |^| x  ->  |^| x  e.  _V )
11 intexr 4210 . . . . . . . . . . . 12  |-  ( |^| x  e.  _V  ->  x  =/=  (/) )
1210, 11syl 14 . . . . . . . . . . 11  |-  ( y  =  |^| x  ->  x  =/=  (/) )
1312adantl 277 . . . . . . . . . 10  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  x  =/=  (/) )
1413neneqd 2399 . . . . . . . . 9  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  -.  x  =  (/) )
15 elinel2 3368 . . . . . . . . . . 11  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  Fin )
1615adantr 276 . . . . . . . . . 10  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  x  e.  Fin )
17 fin0or 7009 . . . . . . . . . . 11  |-  ( x  e.  Fin  ->  (
x  =  (/)  \/  E. z  z  e.  x
) )
1817orcomd 731 . . . . . . . . . 10  |-  ( x  e.  Fin  ->  ( E. z  z  e.  x  \/  x  =  (/) ) )
1916, 18syl 14 . . . . . . . . 9  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  ( E. z  z  e.  x  \/  x  =  (/) ) )
2014, 19ecased 1362 . . . . . . . 8  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  E. z 
z  e.  x )
21 intssuni2m 3923 . . . . . . . 8  |-  ( ( x  C_  A  /\  E. z  z  e.  x
)  ->  |^| x  C_  U. A )
229, 20, 21syl2an2r 595 . . . . . . 7  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  |^| x  C_ 
U. A )
237, 22eqsstrd 3237 . . . . . 6  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  C_ 
U. A )
24 velpw 3633 . . . . . 6  |-  ( y  e.  ~P U. A  <->  y 
C_  U. A )
2523, 24sylibr 134 . . . . 5  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  e.  ~P U. A )
2625rexlimiva 2620 . . . 4  |-  ( E. x  e.  ( ~P A  i^i  Fin )
y  =  |^| x  ->  y  e.  ~P U. A )
2726abssi 3276 . . 3  |-  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  C_  ~P U. A
28 uniexg 4504 . . . 4  |-  ( A  e.  V  ->  U. A  e.  _V )
2928pwexd 4241 . . 3  |-  ( A  e.  V  ->  ~P U. A  e.  _V )
30 ssexg 4199 . . 3  |-  ( ( { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  C_ 
~P U. A  /\  ~P U. A  e.  _V )  ->  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )
3127, 29, 30sylancr 414 . 2  |-  ( A  e.  V  ->  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )
321, 5, 6, 31fvmptd3 5696 1  |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193    =/= wne 2378   E.wrex 2487   _Vcvv 2776    i^i cin 3173    C_ wss 3174   (/)c0 3468   ~Pcpw 3626   U.cuni 3864   |^|cint 3899   ` cfv 5290   Fincfn 6850   ficfi 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-er 6643  df-en 6851  df-fin 6853  df-fi 7097
This theorem is referenced by:  elfi  7099  fi0  7103
  Copyright terms: Public domain W3C validator