ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-igsum Unicode version

Definition df-igsum 12870
Description: Define a finite group sum (also called "iterated sum") of a structure.

Given  G  gsumg  F where  F : A --> ( Base `  G ), the set of indices is  A and the values are given by  F at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set  A and each demanding different properties of  G.

1. If  A  =  (/) and  G has an identity element, then the sum equals this identity.

2. If  A  =  ( M ... N ) and 
G is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e.,  ( ( F `  1 )  +  ( F ` 
2 ) )  +  ( F `  3
), etc.

3. This definition does not handle other cases.

(Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.)

Assertion
Ref Expression
df-igsum  |-  gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
Distinct variable group:    f, m, n, w, x

Detailed syntax breakdown of Definition df-igsum
StepHypRef Expression
1 cgsu 12868 . 2  class  gsumg
2 vw . . 3  setvar  w
3 vf . . 3  setvar  f
4 cvv 2760 . . 3  class  _V
53cv 1363 . . . . . . . 8  class  f
65cdm 4659 . . . . . . 7  class  dom  f
7 c0 3446 . . . . . . 7  class  (/)
86, 7wceq 1364 . . . . . 6  wff  dom  f  =  (/)
9 vx . . . . . . . 8  setvar  x
109cv 1363 . . . . . . 7  class  x
112cv 1363 . . . . . . . 8  class  w
12 c0g 12867 . . . . . . . 8  class  0g
1311, 12cfv 5254 . . . . . . 7  class  ( 0g
`  w )
1410, 13wceq 1364 . . . . . 6  wff  x  =  ( 0g `  w
)
158, 14wa 104 . . . . 5  wff  ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )
16 vm . . . . . . . . . . 11  setvar  m
1716cv 1363 . . . . . . . . . 10  class  m
18 vn . . . . . . . . . . 11  setvar  n
1918cv 1363 . . . . . . . . . 10  class  n
20 cfz 10074 . . . . . . . . . 10  class  ...
2117, 19, 20co 5918 . . . . . . . . 9  class  ( m ... n )
226, 21wceq 1364 . . . . . . . 8  wff  dom  f  =  ( m ... n )
23 cplusg 12695 . . . . . . . . . . . 12  class  +g
2411, 23cfv 5254 . . . . . . . . . . 11  class  ( +g  `  w )
2524, 5, 17cseq 10518 . . . . . . . . . 10  class  seq m
( ( +g  `  w
) ,  f )
2619, 25cfv 5254 . . . . . . . . 9  class  (  seq m ( ( +g  `  w ) ,  f ) `  n )
2710, 26wceq 1364 . . . . . . . 8  wff  x  =  (  seq m ( ( +g  `  w
) ,  f ) `
 n )
2822, 27wa 104 . . . . . . 7  wff  ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )
29 cuz 9592 . . . . . . . 8  class  ZZ>=
3017, 29cfv 5254 . . . . . . 7  class  ( ZZ>= `  m )
3128, 18, 30wrex 2473 . . . . . 6  wff  E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )
3231, 16wex 1503 . . . . 5  wff  E. m E. n  e.  ( ZZ>=
`  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )
3315, 32wo 709 . . . 4  wff  ( ( dom  f  =  (/)  /\  x  =  ( 0g
`  w ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
3433, 9cio 5213 . . 3  class  ( iota
x ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
352, 3, 4, 4, 34cmpo 5920 . 2  class  ( w  e.  _V ,  f  e.  _V  |->  ( iota
x ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
361, 35wceq 1364 1  wff  gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  fngsum  12971  igsumvalx  12972
  Copyright terms: Public domain W3C validator