ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-igsum GIF version

Definition df-igsum 12870
Description: Define a finite group sum (also called "iterated sum") of a structure.

Given 𝐺 Σg 𝐹 where 𝐹:𝐴⟶(Base‘𝐺), the set of indices is 𝐴 and the values are given by 𝐹 at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set 𝐴 and each demanding different properties of 𝐺.

1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity.

2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ((𝐹‘1) + (𝐹‘2)) + (𝐹‘3), etc.

3. This definition does not handle other cases.

(Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.)

Assertion
Ref Expression
df-igsum Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))))
Distinct variable group:   𝑓,𝑚,𝑛,𝑤,𝑥

Detailed syntax breakdown of Definition df-igsum
StepHypRef Expression
1 cgsu 12868 . 2 class Σg
2 vw . . 3 setvar 𝑤
3 vf . . 3 setvar 𝑓
4 cvv 2760 . . 3 class V
53cv 1363 . . . . . . . 8 class 𝑓
65cdm 4659 . . . . . . 7 class dom 𝑓
7 c0 3446 . . . . . . 7 class
86, 7wceq 1364 . . . . . 6 wff dom 𝑓 = ∅
9 vx . . . . . . . 8 setvar 𝑥
109cv 1363 . . . . . . 7 class 𝑥
112cv 1363 . . . . . . . 8 class 𝑤
12 c0g 12867 . . . . . . . 8 class 0g
1311, 12cfv 5254 . . . . . . 7 class (0g𝑤)
1410, 13wceq 1364 . . . . . 6 wff 𝑥 = (0g𝑤)
158, 14wa 104 . . . . 5 wff (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))
16 vm . . . . . . . . . . 11 setvar 𝑚
1716cv 1363 . . . . . . . . . 10 class 𝑚
18 vn . . . . . . . . . . 11 setvar 𝑛
1918cv 1363 . . . . . . . . . 10 class 𝑛
20 cfz 10074 . . . . . . . . . 10 class ...
2117, 19, 20co 5918 . . . . . . . . 9 class (𝑚...𝑛)
226, 21wceq 1364 . . . . . . . 8 wff dom 𝑓 = (𝑚...𝑛)
23 cplusg 12695 . . . . . . . . . . . 12 class +g
2411, 23cfv 5254 . . . . . . . . . . 11 class (+g𝑤)
2524, 5, 17cseq 10518 . . . . . . . . . 10 class seq𝑚((+g𝑤), 𝑓)
2619, 25cfv 5254 . . . . . . . . 9 class (seq𝑚((+g𝑤), 𝑓)‘𝑛)
2710, 26wceq 1364 . . . . . . . 8 wff 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)
2822, 27wa 104 . . . . . . 7 wff (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))
29 cuz 9592 . . . . . . . 8 class
3017, 29cfv 5254 . . . . . . 7 class (ℤ𝑚)
3128, 18, 30wrex 2473 . . . . . 6 wff 𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))
3231, 16wex 1503 . . . . 5 wff 𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))
3315, 32wo 709 . . . 4 wff ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
3433, 9cio 5213 . . 3 class (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
352, 3, 4, 4, 34cmpo 5920 . 2 class (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))))
361, 35wceq 1364 1 wff Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))))
Colors of variables: wff set class
This definition is referenced by:  fngsum  12971  igsumvalx  12972
  Copyright terms: Public domain W3C validator