![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-igsum | GIF version |
Description: Define a finite group sum
(also called "iterated sum") of a structure.
Given 𝐺 Σg 𝐹 where 𝐹:𝐴⟶(Base‘𝐺), the set of indices is 𝐴 and the values are given by 𝐹 at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set 𝐴 and each demanding different properties of 𝐺. 1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ((𝐹‘1) + (𝐹‘2)) + (𝐹‘3), etc. 3. This definition does not handle other cases. (Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.) |
Ref | Expression |
---|---|
df-igsum | ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgsu 12868 | . 2 class Σg | |
2 | vw | . . 3 setvar 𝑤 | |
3 | vf | . . 3 setvar 𝑓 | |
4 | cvv 2760 | . . 3 class V | |
5 | 3 | cv 1363 | . . . . . . . 8 class 𝑓 |
6 | 5 | cdm 4659 | . . . . . . 7 class dom 𝑓 |
7 | c0 3446 | . . . . . . 7 class ∅ | |
8 | 6, 7 | wceq 1364 | . . . . . 6 wff dom 𝑓 = ∅ |
9 | vx | . . . . . . . 8 setvar 𝑥 | |
10 | 9 | cv 1363 | . . . . . . 7 class 𝑥 |
11 | 2 | cv 1363 | . . . . . . . 8 class 𝑤 |
12 | c0g 12867 | . . . . . . . 8 class 0g | |
13 | 11, 12 | cfv 5254 | . . . . . . 7 class (0g‘𝑤) |
14 | 10, 13 | wceq 1364 | . . . . . 6 wff 𝑥 = (0g‘𝑤) |
15 | 8, 14 | wa 104 | . . . . 5 wff (dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) |
16 | vm | . . . . . . . . . . 11 setvar 𝑚 | |
17 | 16 | cv 1363 | . . . . . . . . . 10 class 𝑚 |
18 | vn | . . . . . . . . . . 11 setvar 𝑛 | |
19 | 18 | cv 1363 | . . . . . . . . . 10 class 𝑛 |
20 | cfz 10074 | . . . . . . . . . 10 class ... | |
21 | 17, 19, 20 | co 5918 | . . . . . . . . 9 class (𝑚...𝑛) |
22 | 6, 21 | wceq 1364 | . . . . . . . 8 wff dom 𝑓 = (𝑚...𝑛) |
23 | cplusg 12695 | . . . . . . . . . . . 12 class +g | |
24 | 11, 23 | cfv 5254 | . . . . . . . . . . 11 class (+g‘𝑤) |
25 | 24, 5, 17 | cseq 10518 | . . . . . . . . . 10 class seq𝑚((+g‘𝑤), 𝑓) |
26 | 19, 25 | cfv 5254 | . . . . . . . . 9 class (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
27 | 10, 26 | wceq 1364 | . . . . . . . 8 wff 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
28 | 22, 27 | wa 104 | . . . . . . 7 wff (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
29 | cuz 9592 | . . . . . . . 8 class ℤ≥ | |
30 | 17, 29 | cfv 5254 | . . . . . . 7 class (ℤ≥‘𝑚) |
31 | 28, 18, 30 | wrex 2473 | . . . . . 6 wff ∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
32 | 31, 16 | wex 1503 | . . . . 5 wff ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
33 | 15, 32 | wo 709 | . . . 4 wff ((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) |
34 | 33, 9 | cio 5213 | . . 3 class (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) |
35 | 2, 3, 4, 4, 34 | cmpo 5920 | . 2 class (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))))) |
36 | 1, 35 | wceq 1364 | 1 wff Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))))) |
Colors of variables: wff set class |
This definition is referenced by: fngsum 12971 igsumvalx 12972 |
Copyright terms: Public domain | W3C validator |