| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-igsum | GIF version | ||
| Description: Define a finite group sum
(also called "iterated sum") of a structure.
Given 𝐺 Σg 𝐹 where 𝐹:𝐴⟶(Base‘𝐺), the set of indices is 𝐴 and the values are given by 𝐹 at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set 𝐴 and each demanding different properties of 𝐺. 1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ((𝐹‘1) + (𝐹‘2)) + (𝐹‘3), etc. 3. This definition does not handle other cases. (Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.) |
| Ref | Expression |
|---|---|
| df-igsum | ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsu 12928 | . 2 class Σg | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | vf | . . 3 setvar 𝑓 | |
| 4 | cvv 2763 | . . 3 class V | |
| 5 | 3 | cv 1363 | . . . . . . . 8 class 𝑓 |
| 6 | 5 | cdm 4663 | . . . . . . 7 class dom 𝑓 |
| 7 | c0 3450 | . . . . . . 7 class ∅ | |
| 8 | 6, 7 | wceq 1364 | . . . . . 6 wff dom 𝑓 = ∅ |
| 9 | vx | . . . . . . . 8 setvar 𝑥 | |
| 10 | 9 | cv 1363 | . . . . . . 7 class 𝑥 |
| 11 | 2 | cv 1363 | . . . . . . . 8 class 𝑤 |
| 12 | c0g 12927 | . . . . . . . 8 class 0g | |
| 13 | 11, 12 | cfv 5258 | . . . . . . 7 class (0g‘𝑤) |
| 14 | 10, 13 | wceq 1364 | . . . . . 6 wff 𝑥 = (0g‘𝑤) |
| 15 | 8, 14 | wa 104 | . . . . 5 wff (dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) |
| 16 | vm | . . . . . . . . . . 11 setvar 𝑚 | |
| 17 | 16 | cv 1363 | . . . . . . . . . 10 class 𝑚 |
| 18 | vn | . . . . . . . . . . 11 setvar 𝑛 | |
| 19 | 18 | cv 1363 | . . . . . . . . . 10 class 𝑛 |
| 20 | cfz 10083 | . . . . . . . . . 10 class ... | |
| 21 | 17, 19, 20 | co 5922 | . . . . . . . . 9 class (𝑚...𝑛) |
| 22 | 6, 21 | wceq 1364 | . . . . . . . 8 wff dom 𝑓 = (𝑚...𝑛) |
| 23 | cplusg 12755 | . . . . . . . . . . . 12 class +g | |
| 24 | 11, 23 | cfv 5258 | . . . . . . . . . . 11 class (+g‘𝑤) |
| 25 | 24, 5, 17 | cseq 10539 | . . . . . . . . . 10 class seq𝑚((+g‘𝑤), 𝑓) |
| 26 | 19, 25 | cfv 5258 | . . . . . . . . 9 class (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
| 27 | 10, 26 | wceq 1364 | . . . . . . . 8 wff 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
| 28 | 22, 27 | wa 104 | . . . . . . 7 wff (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
| 29 | cuz 9601 | . . . . . . . 8 class ℤ≥ | |
| 30 | 17, 29 | cfv 5258 | . . . . . . 7 class (ℤ≥‘𝑚) |
| 31 | 28, 18, 30 | wrex 2476 | . . . . . 6 wff ∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
| 32 | 31, 16 | wex 1506 | . . . . 5 wff ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
| 33 | 15, 32 | wo 709 | . . . 4 wff ((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) |
| 34 | 33, 9 | cio 5217 | . . 3 class (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) |
| 35 | 2, 3, 4, 4, 34 | cmpo 5924 | . 2 class (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))))) |
| 36 | 1, 35 | wceq 1364 | 1 wff Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))))) |
| Colors of variables: wff set class |
| This definition is referenced by: fngsum 13031 igsumvalx 13032 |
| Copyright terms: Public domain | W3C validator |