ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  igsumvalx Unicode version

Theorem igsumvalx 12972
Description: Expand out the substitutions in df-igsum 12870. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumval.b  |-  B  =  ( Base `  G
)
gsumval.z  |-  .0.  =  ( 0g `  G )
gsumval.p  |-  .+  =  ( +g  `  G )
gsumval.g  |-  ( ph  ->  G  e.  V )
gsumvalx.f  |-  ( ph  ->  F  e.  X )
gsumvalx.a  |-  ( ph  ->  dom  F  =  A )
Assertion
Ref Expression
igsumvalx  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
Distinct variable groups:    x,  .+    x,  .0.    m, F, n, x    m, G, n, x    ph, m, n, x
Allowed substitution hints:    A( x, m, n)    B( x, m, n)    .+ ( m, n)    V( x, m, n)    X( x, m, n)    .0. ( m, n)

Proof of Theorem igsumvalx
Dummy variables  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 12870 . . 3  |-  gsumg  =  ( w  e. 
_V ,  g  e. 
_V  |->  ( iota x
( ( dom  g  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ) )
21a1i 9 . 2  |-  ( ph  -> 
gsumg  =  ( w  e. 
_V ,  g  e. 
_V  |->  ( iota x
( ( dom  g  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ) ) )
3 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
g  =  F )
43dmeqd 4864 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  dom  g  =  dom  F )
5 gsumvalx.a . . . . . . . 8  |-  ( ph  ->  dom  F  =  A )
65adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  dom  F  =  A )
74, 6eqtrd 2226 . . . . . 6  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  dom  g  =  A
)
87eqeq1d 2202 . . . . 5  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( dom  g  =  (/)  <->  A  =  (/) ) )
9 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  w  =  G )
109fveq2d 5558 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( 0g `  w
)  =  ( 0g
`  G ) )
11 gsumval.z . . . . . . 7  |-  .0.  =  ( 0g `  G )
1210, 11eqtr4di 2244 . . . . . 6  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( 0g `  w
)  =  .0.  )
1312eqeq2d 2205 . . . . 5  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( x  =  ( 0g `  w )  <-> 
x  =  .0.  )
)
148, 13anbi12d 473 . . . 4  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( ( dom  g  =  (/)  /\  x  =  ( 0g `  w
) )  <->  ( A  =  (/)  /\  x  =  .0.  ) ) )
157eqeq1d 2202 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( dom  g  =  ( m ... n
)  <->  A  =  (
m ... n ) ) )
16 eqidd 2194 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  m  =  m )
179fveq2d 5558 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( +g  `  w )  =  ( +g  `  G
) )
18 gsumval.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
1917, 18eqtr4di 2244 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( +g  `  w )  =  .+  )
2016, 19, 3seqeq123d 10527 . . . . . . . . 9  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  seq m ( ( +g  `  w ) ,  g )  =  seq m
(  .+  ,  F
) )
2120fveq1d 5556 . . . . . . . 8  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
(  seq m ( ( +g  `  w ) ,  g ) `  n )  =  (  seq m (  .+  ,  F ) `  n
) )
2221eqeq2d 2205 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n )  <->  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
2315, 22anbi12d 473 . . . . . 6  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( ( dom  g  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  w
) ,  g ) `
 n ) )  <-> 
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
2423rexbidv 2495 . . . . 5  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( E. n  e.  ( ZZ>= `  m )
( dom  g  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) )  <->  E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
2524exbidv 1836 . . . 4  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( E. m E. n  e.  ( ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) )  <->  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
2614, 25orbi12d 794 . . 3  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( ( ( dom  g  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  g  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) )  <-> 
( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
2726iotabidv 5237 . 2  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( iota x ( ( dom  g  =  (/)  /\  x  =  ( 0g
`  w ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) )  =  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
28 gsumval.g . . 3  |-  ( ph  ->  G  e.  V )
2928elexd 2773 . 2  |-  ( ph  ->  G  e.  _V )
30 gsumvalx.f . . 3  |-  ( ph  ->  F  e.  X )
3130elexd 2773 . 2  |-  ( ph  ->  F  e.  _V )
32 unab 3426 . . . 4  |-  ( { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  u.  { x  |  E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) } )  =  { x  |  ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) }
33 df-sn 3624 . . . . . . 7  |-  {  .0.  }  =  { x  |  x  =  .0.  }
34 fn0g 12958 . . . . . . . . . 10  |-  0g  Fn  _V
35 funfvex 5571 . . . . . . . . . . 11  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
3635funfni 5354 . . . . . . . . . 10  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
3734, 29, 36sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( 0g `  G
)  e.  _V )
3811, 37eqeltrid 2280 . . . . . . . 8  |-  ( ph  ->  .0.  e.  _V )
39 snexg 4213 . . . . . . . 8  |-  (  .0. 
e.  _V  ->  {  .0.  }  e.  _V )
4038, 39syl 14 . . . . . . 7  |-  ( ph  ->  {  .0.  }  e.  _V )
4133, 40eqeltrrid 2281 . . . . . 6  |-  ( ph  ->  { x  |  x  =  .0.  }  e.  _V )
42 simpr 110 . . . . . . . 8  |-  ( ( A  =  (/)  /\  x  =  .0.  )  ->  x  =  .0.  )
4342ss2abi 3251 . . . . . . 7  |-  { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  C_  { x  |  x  =  .0.  }
4443a1i 9 . . . . . 6  |-  ( ph  ->  { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  C_  { x  |  x  =  .0.  } )
4541, 44ssexd 4169 . . . . 5  |-  ( ph  ->  { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  e.  _V )
46 zex 9326 . . . . . . 7  |-  ZZ  e.  _V
4746, 46ab2rexex 6183 . . . . . 6  |-  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
(  .+  ,  F
) `  n ) }  e.  _V
48 df-rex 2478 . . . . . . . . . . . 12  |-  ( E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  E. n ( n  e.  ( ZZ>= `  m
)  /\  ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) ) )
49 eluzel2 9597 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ZZ )
50 eluzelz 9601 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  n  e.  ZZ )
5149, 50jca 306 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( m  e.  ZZ  /\  n  e.  ZZ ) )
52 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  x  =  (  seq m
(  .+  ,  F
) `  n )
)
5351, 52anim12i 338 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) )  ->  (
( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
54 anass 401 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) ) )
5553, 54sylib 122 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) )  ->  (
m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5655eximi 1611 . . . . . . . . . . . 12  |-  ( E. n ( n  e.  ( ZZ>= `  m )  /\  ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  E. n ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) ) )
5748, 56sylbi 121 . . . . . . . . . . 11  |-  ( E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  E. n
( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
58 19.42v 1918 . . . . . . . . . . 11  |-  ( E. n ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) )  <->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5957, 58sylib 122 . . . . . . . . . 10  |-  ( E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
60 df-rex 2478 . . . . . . . . . . 11  |-  ( E. n  e.  ZZ  x  =  (  seq m
(  .+  ,  F
) `  n )  <->  E. n ( n  e.  ZZ  /\  x  =  (  seq m ( 
.+  ,  F ) `
 n ) ) )
6160anbi2i 457 . . . . . . . . . 10  |-  ( ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
6259, 61sylibr 134 . . . . . . . . 9  |-  ( E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
6362eximi 1611 . . . . . . . 8  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  E. m
( m  e.  ZZ  /\ 
E. n  e.  ZZ  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
64 df-rex 2478 . . . . . . . 8  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
(  .+  ,  F
) `  n )  <->  E. m ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
6563, 64sylibr 134 . . . . . . 7  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m (  .+  ,  F ) `  n
) )
6665ss2abi 3251 . . . . . 6  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) }  C_  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m (  .+  ,  F ) `  n
) }
6747, 66ssexi 4167 . . . . 5  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) }  e.  _V
68 unexg 4474 . . . . 5  |-  ( ( { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  e.  _V  /\  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) }  e.  _V )  ->  ( { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  u.  { x  |  E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) } )  e.  _V )
6945, 67, 68sylancl 413 . . . 4  |-  ( ph  ->  ( { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  u.  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) } )  e.  _V )
7032, 69eqeltrrid 2281 . . 3  |-  ( ph  ->  { x  |  ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) }  e.  _V )
71 iotaexab 5233 . . 3  |-  ( { x  |  ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) }  e.  _V  ->  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )  e.  _V )
7270, 71syl 14 . 2  |-  ( ph  ->  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )  e.  _V )
732, 27, 29, 31, 72ovmpod 6046 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   E.wrex 2473   _Vcvv 2760    u. cun 3151    C_ wss 3153   (/)c0 3446   {csn 3618   dom cdm 4659   iotacio 5213    Fn wfn 5249   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518   Basecbs 12618   +g cplusg 12695   0gc0g 12867    gsumg cgsu 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-neg 8193  df-inn 8983  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869  df-igsum 12870
This theorem is referenced by:  igsumval  12973  gsumpropd  12975  gsumpropd2  12976
  Copyright terms: Public domain W3C validator