ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  igsumvalx Unicode version

Theorem igsumvalx 13417
Description: Expand out the substitutions in df-igsum 13287. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumval.b  |-  B  =  ( Base `  G
)
gsumval.z  |-  .0.  =  ( 0g `  G )
gsumval.p  |-  .+  =  ( +g  `  G )
gsumval.g  |-  ( ph  ->  G  e.  V )
gsumvalx.f  |-  ( ph  ->  F  e.  X )
gsumvalx.a  |-  ( ph  ->  dom  F  =  A )
Assertion
Ref Expression
igsumvalx  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
Distinct variable groups:    x,  .+    x,  .0.    m, F, n, x    m, G, n, x    ph, m, n, x
Allowed substitution hints:    A( x, m, n)    B( x, m, n)    .+ ( m, n)    V( x, m, n)    X( x, m, n)    .0. ( m, n)

Proof of Theorem igsumvalx
Dummy variables  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 13287 . . 3  |-  gsumg  =  ( w  e. 
_V ,  g  e. 
_V  |->  ( iota x
( ( dom  g  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ) )
21a1i 9 . 2  |-  ( ph  -> 
gsumg  =  ( w  e. 
_V ,  g  e. 
_V  |->  ( iota x
( ( dom  g  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ) ) )
3 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
g  =  F )
43dmeqd 4924 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  dom  g  =  dom  F )
5 gsumvalx.a . . . . . . . 8  |-  ( ph  ->  dom  F  =  A )
65adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  dom  F  =  A )
74, 6eqtrd 2262 . . . . . 6  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  dom  g  =  A
)
87eqeq1d 2238 . . . . 5  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( dom  g  =  (/)  <->  A  =  (/) ) )
9 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  w  =  G )
109fveq2d 5630 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( 0g `  w
)  =  ( 0g
`  G ) )
11 gsumval.z . . . . . . 7  |-  .0.  =  ( 0g `  G )
1210, 11eqtr4di 2280 . . . . . 6  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( 0g `  w
)  =  .0.  )
1312eqeq2d 2241 . . . . 5  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( x  =  ( 0g `  w )  <-> 
x  =  .0.  )
)
148, 13anbi12d 473 . . . 4  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( ( dom  g  =  (/)  /\  x  =  ( 0g `  w
) )  <->  ( A  =  (/)  /\  x  =  .0.  ) ) )
157eqeq1d 2238 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( dom  g  =  ( m ... n
)  <->  A  =  (
m ... n ) ) )
16 eqidd 2230 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  m  =  m )
179fveq2d 5630 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( +g  `  w )  =  ( +g  `  G
) )
18 gsumval.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
1917, 18eqtr4di 2280 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( +g  `  w )  =  .+  )
2016, 19, 3seqeq123d 10673 . . . . . . . . 9  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  seq m ( ( +g  `  w ) ,  g )  =  seq m
(  .+  ,  F
) )
2120fveq1d 5628 . . . . . . . 8  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
(  seq m ( ( +g  `  w ) ,  g ) `  n )  =  (  seq m (  .+  ,  F ) `  n
) )
2221eqeq2d 2241 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n )  <->  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
2315, 22anbi12d 473 . . . . . 6  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( ( dom  g  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  w
) ,  g ) `
 n ) )  <-> 
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
2423rexbidv 2531 . . . . 5  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( E. n  e.  ( ZZ>= `  m )
( dom  g  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) )  <->  E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
2524exbidv 1871 . . . 4  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( E. m E. n  e.  ( ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) )  <->  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
2614, 25orbi12d 798 . . 3  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( ( ( dom  g  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  g  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) )  <-> 
( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
2726iotabidv 5300 . 2  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( iota x ( ( dom  g  =  (/)  /\  x  =  ( 0g
`  w ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) )  =  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
28 gsumval.g . . 3  |-  ( ph  ->  G  e.  V )
2928elexd 2813 . 2  |-  ( ph  ->  G  e.  _V )
30 gsumvalx.f . . 3  |-  ( ph  ->  F  e.  X )
3130elexd 2813 . 2  |-  ( ph  ->  F  e.  _V )
32 unab 3471 . . . 4  |-  ( { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  u.  { x  |  E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) } )  =  { x  |  ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) }
33 df-sn 3672 . . . . . . 7  |-  {  .0.  }  =  { x  |  x  =  .0.  }
34 fn0g 13403 . . . . . . . . . 10  |-  0g  Fn  _V
35 funfvex 5643 . . . . . . . . . . 11  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
3635funfni 5422 . . . . . . . . . 10  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
3734, 29, 36sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( 0g `  G
)  e.  _V )
3811, 37eqeltrid 2316 . . . . . . . 8  |-  ( ph  ->  .0.  e.  _V )
39 snexg 4267 . . . . . . . 8  |-  (  .0. 
e.  _V  ->  {  .0.  }  e.  _V )
4038, 39syl 14 . . . . . . 7  |-  ( ph  ->  {  .0.  }  e.  _V )
4133, 40eqeltrrid 2317 . . . . . 6  |-  ( ph  ->  { x  |  x  =  .0.  }  e.  _V )
42 simpr 110 . . . . . . . 8  |-  ( ( A  =  (/)  /\  x  =  .0.  )  ->  x  =  .0.  )
4342ss2abi 3296 . . . . . . 7  |-  { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  C_  { x  |  x  =  .0.  }
4443a1i 9 . . . . . 6  |-  ( ph  ->  { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  C_  { x  |  x  =  .0.  } )
4541, 44ssexd 4223 . . . . 5  |-  ( ph  ->  { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  e.  _V )
46 zex 9451 . . . . . . 7  |-  ZZ  e.  _V
4746, 46ab2rexex 6274 . . . . . 6  |-  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
(  .+  ,  F
) `  n ) }  e.  _V
48 df-rex 2514 . . . . . . . . . . . 12  |-  ( E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  E. n ( n  e.  ( ZZ>= `  m
)  /\  ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) ) )
49 eluzel2 9723 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ZZ )
50 eluzelz 9727 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  n  e.  ZZ )
5149, 50jca 306 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( m  e.  ZZ  /\  n  e.  ZZ ) )
52 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  x  =  (  seq m
(  .+  ,  F
) `  n )
)
5351, 52anim12i 338 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) )  ->  (
( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
54 anass 401 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) ) )
5553, 54sylib 122 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) )  ->  (
m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5655eximi 1646 . . . . . . . . . . . 12  |-  ( E. n ( n  e.  ( ZZ>= `  m )  /\  ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  E. n ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) ) )
5748, 56sylbi 121 . . . . . . . . . . 11  |-  ( E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  E. n
( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
58 19.42v 1953 . . . . . . . . . . 11  |-  ( E. n ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) )  <->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5957, 58sylib 122 . . . . . . . . . 10  |-  ( E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
60 df-rex 2514 . . . . . . . . . . 11  |-  ( E. n  e.  ZZ  x  =  (  seq m
(  .+  ,  F
) `  n )  <->  E. n ( n  e.  ZZ  /\  x  =  (  seq m ( 
.+  ,  F ) `
 n ) ) )
6160anbi2i 457 . . . . . . . . . 10  |-  ( ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
6259, 61sylibr 134 . . . . . . . . 9  |-  ( E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
6362eximi 1646 . . . . . . . 8  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  E. m
( m  e.  ZZ  /\ 
E. n  e.  ZZ  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
64 df-rex 2514 . . . . . . . 8  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
(  .+  ,  F
) `  n )  <->  E. m ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
6563, 64sylibr 134 . . . . . . 7  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m (  .+  ,  F ) `  n
) )
6665ss2abi 3296 . . . . . 6  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) }  C_  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m (  .+  ,  F ) `  n
) }
6747, 66ssexi 4221 . . . . 5  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) }  e.  _V
68 unexg 4533 . . . . 5  |-  ( ( { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  e.  _V  /\  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) }  e.  _V )  ->  ( { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  u.  { x  |  E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) } )  e.  _V )
6945, 67, 68sylancl 413 . . . 4  |-  ( ph  ->  ( { x  |  ( A  =  (/)  /\  x  =  .0.  ) }  u.  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) } )  e.  _V )
7032, 69eqeltrrid 2317 . . 3  |-  ( ph  ->  { x  |  ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) }  e.  _V )
71 iotaexab 5296 . . 3  |-  ( { x  |  ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) }  e.  _V  ->  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )  e.  _V )
7270, 71syl 14 . 2  |-  ( ph  ->  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )  e.  _V )
732, 27, 29, 31, 72ovmpod 6131 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799    u. cun 3195    C_ wss 3197   (/)c0 3491   {csn 3666   dom cdm 4718   iotacio 5275    Fn wfn 5312   ` cfv 5317  (class class class)co 6000    e. cmpo 6002   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664   Basecbs 13027   +g cplusg 13105   0gc0g 13284    gsumg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-neg 8316  df-inn 9107  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-igsum 13287
This theorem is referenced by:  igsumval  13418  gsumpropd  13420  gsumpropd2  13421
  Copyright terms: Public domain W3C validator