ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fngsum Unicode version

Theorem fngsum 12971
Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
fngsum  |-  gsumg 
Fn  ( _V  X.  _V )

Proof of Theorem fngsum
Dummy variables  f  m  n  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 12870 . 2  |-  gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
2 unab 3426 . . . 4  |-  ( { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) ) }  u.  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } )  =  { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }
3 df-sn 3624 . . . . . . 7  |-  { ( 0g `  w ) }  =  { x  |  x  =  ( 0g `  w ) }
4 fn0g 12958 . . . . . . . . 9  |-  0g  Fn  _V
5 vex 2763 . . . . . . . . 9  |-  w  e. 
_V
6 funfvex 5571 . . . . . . . . . 10  |-  ( ( Fun  0g  /\  w  e.  dom  0g )  -> 
( 0g `  w
)  e.  _V )
76funfni 5354 . . . . . . . . 9  |-  ( ( 0g  Fn  _V  /\  w  e.  _V )  ->  ( 0g `  w
)  e.  _V )
84, 5, 7mp2an 426 . . . . . . . 8  |-  ( 0g
`  w )  e. 
_V
98snex 4214 . . . . . . 7  |-  { ( 0g `  w ) }  e.  _V
103, 9eqeltrri 2267 . . . . . 6  |-  { x  |  x  =  ( 0g `  w ) }  e.  _V
11 simpr 110 . . . . . . 7  |-  ( ( dom  f  =  (/)  /\  x  =  ( 0g
`  w ) )  ->  x  =  ( 0g `  w ) )
1211ss2abi 3251 . . . . . 6  |-  { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) ) }  C_  { x  |  x  =  ( 0g `  w
) }
1310, 12ssexi 4167 . . . . 5  |-  { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) ) }  e.  _V
14 zex 9326 . . . . . . 7  |-  ZZ  e.  _V
1514, 14ab2rexex 6183 . . . . . 6  |-  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) }  e.  _V
16 df-rex 2478 . . . . . . . . . . . 12  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  <->  E. n ( n  e.  ( ZZ>= `  m
)  /\  ( dom  f  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
17 eluzel2 9597 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ZZ )
18 eluzelz 9601 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  n  e.  ZZ )
1917, 18jca 306 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( m  e.  ZZ  /\  n  e.  ZZ ) )
20 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )
2119, 20anim12i 338 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  (
m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  (
( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
22 anass 401 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  <->  ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
2321, 22sylib 122 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  (
m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  (
m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2423eximi 1611 . . . . . . . . . . . 12  |-  ( E. n ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  E. n ( m  e.  ZZ  /\  (
n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2516, 24sylbi 121 . . . . . . . . . . 11  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. n
( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
26 19.42v 1918 . . . . . . . . . . 11  |-  ( E. n ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) )  <->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2725, 26sylib 122 . . . . . . . . . 10  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
28 df-rex 2478 . . . . . . . . . . 11  |-  ( E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n )  <->  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
2928anbi2i 457 . . . . . . . . . 10  |-  ( ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) )  <-> 
( m  e.  ZZ  /\ 
E. n ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
3027, 29sylibr 134 . . . . . . . . 9  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
3130eximi 1611 . . . . . . . 8  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. m ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
32 df-rex 2478 . . . . . . . 8  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n )  <->  E. m
( m  e.  ZZ  /\ 
E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
3331, 32sylibr 134 . . . . . . 7  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) )
3433ss2abi 3251 . . . . . 6  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } 
C_  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) }
3515, 34ssexi 4167 . . . . 5  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) }  e.  _V
3613, 35unex 4472 . . . 4  |-  ( { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) ) }  u.  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } )  e.  _V
372, 36eqeltrri 2267 . . 3  |-  { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }  e.  _V
38 iotaexab 5233 . . 3  |-  ( { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g
`  w ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }  e.  _V  ->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )  e.  _V )
3937, 38ax-mp 5 . 2  |-  ( iota
x ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )  e.  _V
401, 39fnmpoi 6257 1  |-  gsumg 
Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   E.wrex 2473   _Vcvv 2760    u. cun 3151   (/)c0 3446   {csn 3618    X. cxp 4657   dom cdm 4659   iotacio 5213    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518   +g cplusg 12695   0gc0g 12867    gsumg cgsu 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-neg 8193  df-inn 8983  df-z 9318  df-uz 9593  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869  df-igsum 12870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator