| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fngsum | Unicode version | ||
| Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.) |
| Ref | Expression |
|---|---|
| fngsum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-igsum 13176 |
. 2
| |
| 2 | unab 3444 |
. . . 4
| |
| 3 | df-sn 3644 |
. . . . . . 7
| |
| 4 | fn0g 13292 |
. . . . . . . . 9
| |
| 5 | vex 2776 |
. . . . . . . . 9
| |
| 6 | funfvex 5611 |
. . . . . . . . . 10
| |
| 7 | 6 | funfni 5390 |
. . . . . . . . 9
|
| 8 | 4, 5, 7 | mp2an 426 |
. . . . . . . 8
|
| 9 | 8 | snex 4240 |
. . . . . . 7
|
| 10 | 3, 9 | eqeltrri 2280 |
. . . . . 6
|
| 11 | simpr 110 |
. . . . . . 7
| |
| 12 | 11 | ss2abi 3269 |
. . . . . 6
|
| 13 | 10, 12 | ssexi 4193 |
. . . . 5
|
| 14 | zex 9411 |
. . . . . . 7
| |
| 15 | 14, 14 | ab2rexex 6234 |
. . . . . 6
|
| 16 | df-rex 2491 |
. . . . . . . . . . . 12
| |
| 17 | eluzel2 9683 |
. . . . . . . . . . . . . . . 16
| |
| 18 | eluzelz 9687 |
. . . . . . . . . . . . . . . 16
| |
| 19 | 17, 18 | jca 306 |
. . . . . . . . . . . . . . 15
|
| 20 | simpr 110 |
. . . . . . . . . . . . . . 15
| |
| 21 | 19, 20 | anim12i 338 |
. . . . . . . . . . . . . 14
|
| 22 | anass 401 |
. . . . . . . . . . . . . 14
| |
| 23 | 21, 22 | sylib 122 |
. . . . . . . . . . . . 13
|
| 24 | 23 | eximi 1624 |
. . . . . . . . . . . 12
|
| 25 | 16, 24 | sylbi 121 |
. . . . . . . . . . 11
|
| 26 | 19.42v 1931 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | sylib 122 |
. . . . . . . . . 10
|
| 28 | df-rex 2491 |
. . . . . . . . . . 11
| |
| 29 | 28 | anbi2i 457 |
. . . . . . . . . 10
|
| 30 | 27, 29 | sylibr 134 |
. . . . . . . . 9
|
| 31 | 30 | eximi 1624 |
. . . . . . . 8
|
| 32 | df-rex 2491 |
. . . . . . . 8
| |
| 33 | 31, 32 | sylibr 134 |
. . . . . . 7
|
| 34 | 33 | ss2abi 3269 |
. . . . . 6
|
| 35 | 15, 34 | ssexi 4193 |
. . . . 5
|
| 36 | 13, 35 | unex 4501 |
. . . 4
|
| 37 | 2, 36 | eqeltrri 2280 |
. . 3
|
| 38 | iotaexab 5264 |
. . 3
| |
| 39 | 37, 38 | ax-mp 5 |
. 2
|
| 40 | 1, 39 | fnmpoi 6307 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-neg 8276 df-inn 9067 df-z 9403 df-uz 9679 df-ndx 12920 df-slot 12921 df-base 12923 df-0g 13175 df-igsum 13176 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |