ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fngsum Unicode version

Theorem fngsum 13416
Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
fngsum  |-  gsumg 
Fn  ( _V  X.  _V )

Proof of Theorem fngsum
Dummy variables  f  m  n  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 13287 . 2  |-  gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
2 unab 3471 . . . 4  |-  ( { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) ) }  u.  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } )  =  { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }
3 df-sn 3672 . . . . . . 7  |-  { ( 0g `  w ) }  =  { x  |  x  =  ( 0g `  w ) }
4 fn0g 13403 . . . . . . . . 9  |-  0g  Fn  _V
5 vex 2802 . . . . . . . . 9  |-  w  e. 
_V
6 funfvex 5643 . . . . . . . . . 10  |-  ( ( Fun  0g  /\  w  e.  dom  0g )  -> 
( 0g `  w
)  e.  _V )
76funfni 5422 . . . . . . . . 9  |-  ( ( 0g  Fn  _V  /\  w  e.  _V )  ->  ( 0g `  w
)  e.  _V )
84, 5, 7mp2an 426 . . . . . . . 8  |-  ( 0g
`  w )  e. 
_V
98snex 4268 . . . . . . 7  |-  { ( 0g `  w ) }  e.  _V
103, 9eqeltrri 2303 . . . . . 6  |-  { x  |  x  =  ( 0g `  w ) }  e.  _V
11 simpr 110 . . . . . . 7  |-  ( ( dom  f  =  (/)  /\  x  =  ( 0g
`  w ) )  ->  x  =  ( 0g `  w ) )
1211ss2abi 3296 . . . . . 6  |-  { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) ) }  C_  { x  |  x  =  ( 0g `  w
) }
1310, 12ssexi 4221 . . . . 5  |-  { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) ) }  e.  _V
14 zex 9451 . . . . . . 7  |-  ZZ  e.  _V
1514, 14ab2rexex 6274 . . . . . 6  |-  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) }  e.  _V
16 df-rex 2514 . . . . . . . . . . . 12  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  <->  E. n ( n  e.  ( ZZ>= `  m
)  /\  ( dom  f  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
17 eluzel2 9723 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ZZ )
18 eluzelz 9727 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  n  e.  ZZ )
1917, 18jca 306 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( m  e.  ZZ  /\  n  e.  ZZ ) )
20 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )
2119, 20anim12i 338 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  (
m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  (
( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
22 anass 401 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  <->  ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
2321, 22sylib 122 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  (
m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  (
m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2423eximi 1646 . . . . . . . . . . . 12  |-  ( E. n ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  E. n ( m  e.  ZZ  /\  (
n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2516, 24sylbi 121 . . . . . . . . . . 11  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. n
( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
26 19.42v 1953 . . . . . . . . . . 11  |-  ( E. n ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) )  <->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2725, 26sylib 122 . . . . . . . . . 10  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
28 df-rex 2514 . . . . . . . . . . 11  |-  ( E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n )  <->  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
2928anbi2i 457 . . . . . . . . . 10  |-  ( ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) )  <-> 
( m  e.  ZZ  /\ 
E. n ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
3027, 29sylibr 134 . . . . . . . . 9  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
3130eximi 1646 . . . . . . . 8  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. m ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
32 df-rex 2514 . . . . . . . 8  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n )  <->  E. m
( m  e.  ZZ  /\ 
E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
3331, 32sylibr 134 . . . . . . 7  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) )
3433ss2abi 3296 . . . . . 6  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } 
C_  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) }
3515, 34ssexi 4221 . . . . 5  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) }  e.  _V
3613, 35unex 4531 . . . 4  |-  ( { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) ) }  u.  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } )  e.  _V
372, 36eqeltrri 2303 . . 3  |-  { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }  e.  _V
38 iotaexab 5296 . . 3  |-  ( { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g
`  w ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }  e.  _V  ->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )  e.  _V )
3937, 38ax-mp 5 . 2  |-  ( iota
x ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )  e.  _V
401, 39fnmpoi 6347 1  |-  gsumg 
Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799    u. cun 3195   (/)c0 3491   {csn 3666    X. cxp 4716   dom cdm 4718   iotacio 5275    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664   +g cplusg 13105   0gc0g 13284    gsumg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-neg 8316  df-inn 9107  df-z 9443  df-uz 9719  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-igsum 13287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator