| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fngsum | Unicode version | ||
| Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.) |
| Ref | Expression |
|---|---|
| fngsum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-igsum 13287 |
. 2
| |
| 2 | unab 3471 |
. . . 4
| |
| 3 | df-sn 3672 |
. . . . . . 7
| |
| 4 | fn0g 13403 |
. . . . . . . . 9
| |
| 5 | vex 2802 |
. . . . . . . . 9
| |
| 6 | funfvex 5643 |
. . . . . . . . . 10
| |
| 7 | 6 | funfni 5422 |
. . . . . . . . 9
|
| 8 | 4, 5, 7 | mp2an 426 |
. . . . . . . 8
|
| 9 | 8 | snex 4268 |
. . . . . . 7
|
| 10 | 3, 9 | eqeltrri 2303 |
. . . . . 6
|
| 11 | simpr 110 |
. . . . . . 7
| |
| 12 | 11 | ss2abi 3296 |
. . . . . 6
|
| 13 | 10, 12 | ssexi 4221 |
. . . . 5
|
| 14 | zex 9451 |
. . . . . . 7
| |
| 15 | 14, 14 | ab2rexex 6274 |
. . . . . 6
|
| 16 | df-rex 2514 |
. . . . . . . . . . . 12
| |
| 17 | eluzel2 9723 |
. . . . . . . . . . . . . . . 16
| |
| 18 | eluzelz 9727 |
. . . . . . . . . . . . . . . 16
| |
| 19 | 17, 18 | jca 306 |
. . . . . . . . . . . . . . 15
|
| 20 | simpr 110 |
. . . . . . . . . . . . . . 15
| |
| 21 | 19, 20 | anim12i 338 |
. . . . . . . . . . . . . 14
|
| 22 | anass 401 |
. . . . . . . . . . . . . 14
| |
| 23 | 21, 22 | sylib 122 |
. . . . . . . . . . . . 13
|
| 24 | 23 | eximi 1646 |
. . . . . . . . . . . 12
|
| 25 | 16, 24 | sylbi 121 |
. . . . . . . . . . 11
|
| 26 | 19.42v 1953 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | sylib 122 |
. . . . . . . . . 10
|
| 28 | df-rex 2514 |
. . . . . . . . . . 11
| |
| 29 | 28 | anbi2i 457 |
. . . . . . . . . 10
|
| 30 | 27, 29 | sylibr 134 |
. . . . . . . . 9
|
| 31 | 30 | eximi 1646 |
. . . . . . . 8
|
| 32 | df-rex 2514 |
. . . . . . . 8
| |
| 33 | 31, 32 | sylibr 134 |
. . . . . . 7
|
| 34 | 33 | ss2abi 3296 |
. . . . . 6
|
| 35 | 15, 34 | ssexi 4221 |
. . . . 5
|
| 36 | 13, 35 | unex 4531 |
. . . 4
|
| 37 | 2, 36 | eqeltrri 2303 |
. . 3
|
| 38 | iotaexab 5296 |
. . 3
| |
| 39 | 37, 38 | ax-mp 5 |
. 2
|
| 40 | 1, 39 | fnmpoi 6347 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-neg 8316 df-inn 9107 df-z 9443 df-uz 9719 df-ndx 13030 df-slot 13031 df-base 13033 df-0g 13286 df-igsum 13287 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |