ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fngsum Unicode version

Theorem fngsum 13220
Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
fngsum  |-  gsumg 
Fn  ( _V  X.  _V )

Proof of Theorem fngsum
Dummy variables  f  m  n  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 13091 . 2  |-  gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
2 unab 3440 . . . 4  |-  ( { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) ) }  u.  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } )  =  { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }
3 df-sn 3639 . . . . . . 7  |-  { ( 0g `  w ) }  =  { x  |  x  =  ( 0g `  w ) }
4 fn0g 13207 . . . . . . . . 9  |-  0g  Fn  _V
5 vex 2775 . . . . . . . . 9  |-  w  e. 
_V
6 funfvex 5593 . . . . . . . . . 10  |-  ( ( Fun  0g  /\  w  e.  dom  0g )  -> 
( 0g `  w
)  e.  _V )
76funfni 5376 . . . . . . . . 9  |-  ( ( 0g  Fn  _V  /\  w  e.  _V )  ->  ( 0g `  w
)  e.  _V )
84, 5, 7mp2an 426 . . . . . . . 8  |-  ( 0g
`  w )  e. 
_V
98snex 4229 . . . . . . 7  |-  { ( 0g `  w ) }  e.  _V
103, 9eqeltrri 2279 . . . . . 6  |-  { x  |  x  =  ( 0g `  w ) }  e.  _V
11 simpr 110 . . . . . . 7  |-  ( ( dom  f  =  (/)  /\  x  =  ( 0g
`  w ) )  ->  x  =  ( 0g `  w ) )
1211ss2abi 3265 . . . . . 6  |-  { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) ) }  C_  { x  |  x  =  ( 0g `  w
) }
1310, 12ssexi 4182 . . . . 5  |-  { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) ) }  e.  _V
14 zex 9381 . . . . . . 7  |-  ZZ  e.  _V
1514, 14ab2rexex 6216 . . . . . 6  |-  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) }  e.  _V
16 df-rex 2490 . . . . . . . . . . . 12  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  <->  E. n ( n  e.  ( ZZ>= `  m
)  /\  ( dom  f  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
17 eluzel2 9653 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ZZ )
18 eluzelz 9657 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  n  e.  ZZ )
1917, 18jca 306 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( m  e.  ZZ  /\  n  e.  ZZ ) )
20 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )
2119, 20anim12i 338 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  (
m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  (
( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
22 anass 401 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  <->  ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
2321, 22sylib 122 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  (
m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  (
m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2423eximi 1623 . . . . . . . . . . . 12  |-  ( E. n ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  E. n ( m  e.  ZZ  /\  (
n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2516, 24sylbi 121 . . . . . . . . . . 11  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. n
( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
26 19.42v 1930 . . . . . . . . . . 11  |-  ( E. n ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) )  <->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2725, 26sylib 122 . . . . . . . . . 10  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
28 df-rex 2490 . . . . . . . . . . 11  |-  ( E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n )  <->  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
2928anbi2i 457 . . . . . . . . . 10  |-  ( ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) )  <-> 
( m  e.  ZZ  /\ 
E. n ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
3027, 29sylibr 134 . . . . . . . . 9  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
3130eximi 1623 . . . . . . . 8  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. m ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
32 df-rex 2490 . . . . . . . 8  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n )  <->  E. m
( m  e.  ZZ  /\ 
E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
3331, 32sylibr 134 . . . . . . 7  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) )
3433ss2abi 3265 . . . . . 6  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } 
C_  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) }
3515, 34ssexi 4182 . . . . 5  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) }  e.  _V
3613, 35unex 4488 . . . 4  |-  ( { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) ) }  u.  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } )  e.  _V
372, 36eqeltrri 2279 . . 3  |-  { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }  e.  _V
38 iotaexab 5250 . . 3  |-  ( { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g
`  w ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }  e.  _V  ->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )  e.  _V )
3937, 38ax-mp 5 . 2  |-  ( iota
x ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )  e.  _V
401, 39fnmpoi 6289 1  |-  gsumg 
Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   E.wrex 2485   _Vcvv 2772    u. cun 3164   (/)c0 3460   {csn 3633    X. cxp 4673   dom cdm 4675   iotacio 5230    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592   +g cplusg 12909   0gc0g 13088    gsumg cgsu 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-neg 8246  df-inn 9037  df-z 9373  df-uz 9649  df-ndx 12835  df-slot 12836  df-base 12838  df-0g 13090  df-igsum 13091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator