ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fngsum Unicode version

Theorem fngsum 13090
Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
fngsum  |-  gsumg 
Fn  ( _V  X.  _V )

Proof of Theorem fngsum
Dummy variables  f  m  n  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 12961 . 2  |-  gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
2 unab 3431 . . . 4  |-  ( { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) ) }  u.  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } )  =  { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }
3 df-sn 3629 . . . . . . 7  |-  { ( 0g `  w ) }  =  { x  |  x  =  ( 0g `  w ) }
4 fn0g 13077 . . . . . . . . 9  |-  0g  Fn  _V
5 vex 2766 . . . . . . . . 9  |-  w  e. 
_V
6 funfvex 5578 . . . . . . . . . 10  |-  ( ( Fun  0g  /\  w  e.  dom  0g )  -> 
( 0g `  w
)  e.  _V )
76funfni 5361 . . . . . . . . 9  |-  ( ( 0g  Fn  _V  /\  w  e.  _V )  ->  ( 0g `  w
)  e.  _V )
84, 5, 7mp2an 426 . . . . . . . 8  |-  ( 0g
`  w )  e. 
_V
98snex 4219 . . . . . . 7  |-  { ( 0g `  w ) }  e.  _V
103, 9eqeltrri 2270 . . . . . 6  |-  { x  |  x  =  ( 0g `  w ) }  e.  _V
11 simpr 110 . . . . . . 7  |-  ( ( dom  f  =  (/)  /\  x  =  ( 0g
`  w ) )  ->  x  =  ( 0g `  w ) )
1211ss2abi 3256 . . . . . 6  |-  { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) ) }  C_  { x  |  x  =  ( 0g `  w
) }
1310, 12ssexi 4172 . . . . 5  |-  { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) ) }  e.  _V
14 zex 9352 . . . . . . 7  |-  ZZ  e.  _V
1514, 14ab2rexex 6197 . . . . . 6  |-  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) }  e.  _V
16 df-rex 2481 . . . . . . . . . . . 12  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  <->  E. n ( n  e.  ( ZZ>= `  m
)  /\  ( dom  f  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
17 eluzel2 9623 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ZZ )
18 eluzelz 9627 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  n  e.  ZZ )
1917, 18jca 306 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( m  e.  ZZ  /\  n  e.  ZZ ) )
20 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )
2119, 20anim12i 338 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  (
m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  (
( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
22 anass 401 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  n  e.  ZZ )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  <->  ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
2321, 22sylib 122 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  (
m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  (
m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2423eximi 1614 . . . . . . . . . . . 12  |-  ( E. n ( n  e.  ( ZZ>= `  m )  /\  ( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )  ->  E. n ( m  e.  ZZ  /\  (
n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2516, 24sylbi 121 . . . . . . . . . . 11  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. n
( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
26 19.42v 1921 . . . . . . . . . . 11  |-  ( E. n ( m  e.  ZZ  /\  ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) )  <->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
2725, 26sylib 122 . . . . . . . . . 10  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  ( m  e.  ZZ  /\  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )
28 df-rex 2481 . . . . . . . . . . 11  |-  ( E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n )  <->  E. n
( n  e.  ZZ  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
2928anbi2i 457 . . . . . . . . . 10  |-  ( ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) )  <-> 
( m  e.  ZZ  /\ 
E. n ( n  e.  ZZ  /\  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) ) ) )
3027, 29sylibr 134 . . . . . . . . 9  |-  ( E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
3130eximi 1614 . . . . . . . 8  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. m ( m  e.  ZZ  /\  E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
32 df-rex 2481 . . . . . . . 8  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n )  <->  E. m
( m  e.  ZZ  /\ 
E. n  e.  ZZ  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) )
3331, 32sylibr 134 . . . . . . 7  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) )  ->  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) )
3433ss2abi 3256 . . . . . 6  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } 
C_  { x  |  E. m  e.  ZZ  E. n  e.  ZZ  x  =  (  seq m
( ( +g  `  w
) ,  f ) `
 n ) }
3515, 34ssexi 4172 . . . . 5  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) }  e.  _V
3613, 35unex 4477 . . . 4  |-  ( { x  |  ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) ) }  u.  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) } )  e.  _V
372, 36eqeltrri 2270 . . 3  |-  { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }  e.  _V
38 iotaexab 5238 . . 3  |-  ( { x  |  ( ( dom  f  =  (/)  /\  x  =  ( 0g
`  w ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) }  e.  _V  ->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )  e.  _V )
3937, 38ax-mp 5 . 2  |-  ( iota
x ( ( dom  f  =  (/)  /\  x  =  ( 0g `  w ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) )  e.  _V
401, 39fnmpoi 6270 1  |-  gsumg 
Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   E.wrex 2476   _Vcvv 2763    u. cun 3155   (/)c0 3451   {csn 3623    X. cxp 4662   dom cdm 4664   iotacio 5218    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    seqcseq 10556   +g cplusg 12780   0gc0g 12958    gsumg cgsu 12959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-neg 8217  df-inn 9008  df-z 9344  df-uz 9619  df-ndx 12706  df-slot 12707  df-base 12709  df-0g 12960  df-igsum 12961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator