| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fngsum | Unicode version | ||
| Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.) | 
| Ref | Expression | 
|---|---|
| fngsum | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-igsum 12930 | 
. 2
 | |
| 2 | unab 3430 | 
. . . 4
 | |
| 3 | df-sn 3628 | 
. . . . . . 7
 | |
| 4 | fn0g 13018 | 
. . . . . . . . 9
 | |
| 5 | vex 2766 | 
. . . . . . . . 9
 | |
| 6 | funfvex 5575 | 
. . . . . . . . . 10
 | |
| 7 | 6 | funfni 5358 | 
. . . . . . . . 9
 | 
| 8 | 4, 5, 7 | mp2an 426 | 
. . . . . . . 8
 | 
| 9 | 8 | snex 4218 | 
. . . . . . 7
 | 
| 10 | 3, 9 | eqeltrri 2270 | 
. . . . . 6
 | 
| 11 | simpr 110 | 
. . . . . . 7
 | |
| 12 | 11 | ss2abi 3255 | 
. . . . . 6
 | 
| 13 | 10, 12 | ssexi 4171 | 
. . . . 5
 | 
| 14 | zex 9335 | 
. . . . . . 7
 | |
| 15 | 14, 14 | ab2rexex 6188 | 
. . . . . 6
 | 
| 16 | df-rex 2481 | 
. . . . . . . . . . . 12
 | |
| 17 | eluzel2 9606 | 
. . . . . . . . . . . . . . . 16
 | |
| 18 | eluzelz 9610 | 
. . . . . . . . . . . . . . . 16
 | |
| 19 | 17, 18 | jca 306 | 
. . . . . . . . . . . . . . 15
 | 
| 20 | simpr 110 | 
. . . . . . . . . . . . . . 15
 | |
| 21 | 19, 20 | anim12i 338 | 
. . . . . . . . . . . . . 14
 | 
| 22 | anass 401 | 
. . . . . . . . . . . . . 14
 | |
| 23 | 21, 22 | sylib 122 | 
. . . . . . . . . . . . 13
 | 
| 24 | 23 | eximi 1614 | 
. . . . . . . . . . . 12
 | 
| 25 | 16, 24 | sylbi 121 | 
. . . . . . . . . . 11
 | 
| 26 | 19.42v 1921 | 
. . . . . . . . . . 11
 | |
| 27 | 25, 26 | sylib 122 | 
. . . . . . . . . 10
 | 
| 28 | df-rex 2481 | 
. . . . . . . . . . 11
 | |
| 29 | 28 | anbi2i 457 | 
. . . . . . . . . 10
 | 
| 30 | 27, 29 | sylibr 134 | 
. . . . . . . . 9
 | 
| 31 | 30 | eximi 1614 | 
. . . . . . . 8
 | 
| 32 | df-rex 2481 | 
. . . . . . . 8
 | |
| 33 | 31, 32 | sylibr 134 | 
. . . . . . 7
 | 
| 34 | 33 | ss2abi 3255 | 
. . . . . 6
 | 
| 35 | 15, 34 | ssexi 4171 | 
. . . . 5
 | 
| 36 | 13, 35 | unex 4476 | 
. . . 4
 | 
| 37 | 2, 36 | eqeltrri 2270 | 
. . 3
 | 
| 38 | iotaexab 5237 | 
. . 3
 | |
| 39 | 37, 38 | ax-mp 5 | 
. 2
 | 
| 40 | 1, 39 | fnmpoi 6261 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-neg 8200 df-inn 8991 df-z 9327 df-uz 9602 df-ndx 12681 df-slot 12682 df-base 12684 df-0g 12929 df-igsum 12930 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |