| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fngsum | Unicode version | ||
| Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.) |
| Ref | Expression |
|---|---|
| fngsum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-igsum 13091 |
. 2
| |
| 2 | unab 3440 |
. . . 4
| |
| 3 | df-sn 3639 |
. . . . . . 7
| |
| 4 | fn0g 13207 |
. . . . . . . . 9
| |
| 5 | vex 2775 |
. . . . . . . . 9
| |
| 6 | funfvex 5593 |
. . . . . . . . . 10
| |
| 7 | 6 | funfni 5376 |
. . . . . . . . 9
|
| 8 | 4, 5, 7 | mp2an 426 |
. . . . . . . 8
|
| 9 | 8 | snex 4229 |
. . . . . . 7
|
| 10 | 3, 9 | eqeltrri 2279 |
. . . . . 6
|
| 11 | simpr 110 |
. . . . . . 7
| |
| 12 | 11 | ss2abi 3265 |
. . . . . 6
|
| 13 | 10, 12 | ssexi 4182 |
. . . . 5
|
| 14 | zex 9381 |
. . . . . . 7
| |
| 15 | 14, 14 | ab2rexex 6216 |
. . . . . 6
|
| 16 | df-rex 2490 |
. . . . . . . . . . . 12
| |
| 17 | eluzel2 9653 |
. . . . . . . . . . . . . . . 16
| |
| 18 | eluzelz 9657 |
. . . . . . . . . . . . . . . 16
| |
| 19 | 17, 18 | jca 306 |
. . . . . . . . . . . . . . 15
|
| 20 | simpr 110 |
. . . . . . . . . . . . . . 15
| |
| 21 | 19, 20 | anim12i 338 |
. . . . . . . . . . . . . 14
|
| 22 | anass 401 |
. . . . . . . . . . . . . 14
| |
| 23 | 21, 22 | sylib 122 |
. . . . . . . . . . . . 13
|
| 24 | 23 | eximi 1623 |
. . . . . . . . . . . 12
|
| 25 | 16, 24 | sylbi 121 |
. . . . . . . . . . 11
|
| 26 | 19.42v 1930 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | sylib 122 |
. . . . . . . . . 10
|
| 28 | df-rex 2490 |
. . . . . . . . . . 11
| |
| 29 | 28 | anbi2i 457 |
. . . . . . . . . 10
|
| 30 | 27, 29 | sylibr 134 |
. . . . . . . . 9
|
| 31 | 30 | eximi 1623 |
. . . . . . . 8
|
| 32 | df-rex 2490 |
. . . . . . . 8
| |
| 33 | 31, 32 | sylibr 134 |
. . . . . . 7
|
| 34 | 33 | ss2abi 3265 |
. . . . . 6
|
| 35 | 15, 34 | ssexi 4182 |
. . . . 5
|
| 36 | 13, 35 | unex 4488 |
. . . 4
|
| 37 | 2, 36 | eqeltrri 2279 |
. . 3
|
| 38 | iotaexab 5250 |
. . 3
| |
| 39 | 37, 38 | ax-mp 5 |
. 2
|
| 40 | 1, 39 | fnmpoi 6289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-neg 8246 df-inn 9037 df-z 9373 df-uz 9649 df-ndx 12835 df-slot 12836 df-base 12838 df-0g 13090 df-igsum 13091 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |