HomeHome Intuitionistic Logic Explorer
Theorem List (p. 131 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13001-13100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-vsca 13001 Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 .s  = Slot  6
 
Definitiondf-ip 13002 Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 .i  = Slot  8
 
Definitiondf-tset 13003 Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- TopSet  = Slot  9
 
Definitiondf-ple 13004 Define "less than or equal to" ordering extractor for posets and related structures. We use ; 1 0 for the index to avoid conflict with  1 through  9 used for other purposes. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
 |- 
 le  = Slot ; 1 0
 
Definitiondf-ocomp 13005 Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 oc  = Slot ; 1 1
 
Definitiondf-ds 13006 Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 dist  = Slot ; 1 2
 
Definitiondf-unif 13007 Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |- 
 UnifSet  = Slot ; 1 3
 
Definitiondf-hom 13008 Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |- 
 Hom  = Slot ; 1 4
 
Definitiondf-cco 13009 Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |- comp  = Slot ; 1
 5
 
Theoremstrleund 13010 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  ( ph  ->  F Struct  <. A ,  B >. )   &    |-  ( ph  ->  G Struct  <. C ,  D >. )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  ( F  u.  G ) Struct  <. A ,  D >. )
 
Theoremstrleun 13011 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  F Struct  <. A ,  B >.   &    |-  G Struct 
 <. C ,  D >.   &    |-  B  <  C   =>    |-  ( F  u.  G ) Struct 
 <. A ,  D >.
 
Theoremstrext 13012 Extending the upper range of a structure. This works because when we say that a structure has components in  A ... C we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
 |-  ( ph  ->  F Struct  <. A ,  B >. )   &    |-  ( ph  ->  C  e.  ( ZZ>= `  B )
 )   =>    |-  ( ph  ->  F Struct  <. A ,  C >. )
 
Theoremstrle1g 13013 Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  I  e.  NN   &    |-  A  =  I   =>    |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
 
Theoremstrle2g 13014 Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  I  e.  NN   &    |-  A  =  I   &    |-  I  <  J   &    |-  J  e.  NN   &    |-  B  =  J   =>    |-  (
 ( X  e.  V  /\  Y  e.  W ) 
 ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
 
Theoremstrle3g 13015 Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  I  e.  NN   &    |-  A  =  I   &    |-  I  <  J   &    |-  J  e.  NN   &    |-  B  =  J   &    |-  J  <  K   &    |-  K  e.  NN   &    |-  C  =  K   =>    |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P ) 
 ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )
 
Theoremplusgndx 13016 Index value of the df-plusg 12997 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( +g  `  ndx )  =  2
 
Theoremplusgid 13017 Utility theorem: index-independent form of df-plusg 12997. (Contributed by NM, 20-Oct-2012.)
 |- 
 +g  = Slot  ( +g  ` 
 ndx )
 
Theoremplusgndxnn 13018 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.)
 |-  ( +g  `  ndx )  e.  NN
 
Theoremplusgslid 13019 Slot property of  +g. (Contributed by Jim Kingdon, 3-Feb-2023.)
 |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e. 
 NN )
 
Theorembasendxltplusgndx 13020 The index of the slot for the base set is less then the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( +g  `  ndx )
 
Theoremopelstrsl 13021 The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( ph  ->  S Struct  X )   &    |-  ( ph  ->  V  e.  Y )   &    |-  ( ph  ->  <. ( E `  ndx ) ,  V >.  e.  S )   =>    |-  ( ph  ->  V  =  ( E `  S ) )
 
Theoremopelstrbas 13022 The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
 |-  ( ph  ->  S Struct  X )   &    |-  ( ph  ->  V  e.  Y )   &    |-  ( ph  ->  <. ( Base `  ndx ) ,  V >.  e.  S )   =>    |-  ( ph  ->  V  =  ( Base `  S )
 )
 
Theorem1strstrg 13023 A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. }   =>    |-  ( B  e.  V  ->  G Struct  <. 1 ,  1
 >. )
 
Theorem1strbas 13024 The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. }   =>    |-  ( B  e.  V  ->  B  =  ( Base `  G ) )
 
Theorem2strstrndx 13025 A constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 14-Dec-2025.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  G Struct  <. ( Base `  ndx ) ,  N >. )
 
Theorem2strstrg 13026 A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) Use 2strstrndx 13025 instead. (New usage is discouraged.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  G Struct  <. 1 ,  N >. )
 
Theorem2strbasg 13027 The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  B  =  ( Base `  G ) )
 
Theorem2stropg 13028 The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  .+  =  ( E `
  G ) )
 
Theorem2strstr1g 13029 A constructed two-slot structure. Version of 2strstrg 13026 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  G Struct  <. ( Base `  ndx ) ,  N >. )
 
Theorem2strbas1g 13030 The base set of a constructed two-slot structure. Version of 2strbasg 13027 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  B  =  ( Base `  G ) )
 
Theorem2strop1g 13031 The other slot of a constructed two-slot structure. Version of 2stropg 13028 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   &    |-  E  = Slot  N   =>    |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  =  ( E `  G ) )
 
Theorembasendxnplusgndx 13032 The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.)
 |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
 
Theoremgrpstrg 13033 A constructed group is a structure on 
1 ... 2. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W )  ->  G Struct  <. 1 ,  2 >. )
 
Theoremgrpbaseg 13034 The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  =  (
 Base `  G ) )
 
Theoremgrpplusgg 13035 The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  =  ( +g  `  G ) )
 
Theoremressplusgd 13036  +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  ( ph  ->  H  =  ( Gs  A ) )   &    |-  ( ph  ->  .+  =  ( +g  `  G ) )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  G  e.  W )   =>    |-  ( ph  ->  .+  =  ( +g  `  H ) )
 
Theoremmulrndx 13037 Index value of the df-mulr 12998 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( .r `  ndx )  =  3
 
Theoremmulridx 13038 Utility theorem: index-independent form of df-mulr 12998. (Contributed by Mario Carneiro, 8-Jun-2013.)
 |- 
 .r  = Slot  ( .r ` 
 ndx )
 
Theoremmulrslid 13039 Slot property of  .r. (Contributed by Jim Kingdon, 3-Feb-2023.)
 |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
 
Theoremplusgndxnmulrndx 13040 The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
 |-  ( +g  `  ndx )  =/=  ( .r `  ndx )
 
Theorembasendxnmulrndx 13041 The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
 |-  ( Base `  ndx )  =/=  ( .r `  ndx )
 
Theoremrngstrg 13042 A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
 |-  R  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W  /\  .x.  e.  X )  ->  R Struct  <. 1 ,  3 >. )
 
Theoremrngbaseg 13043 The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
 |-  R  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W  /\  .x.  e.  X )  ->  B  =  ( Base `  R )
 )
 
Theoremrngplusgg 13044 The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  R  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W  /\  .x.  e.  X )  ->  .+  =  ( +g  `  R )
 )
 
Theoremrngmulrg 13045 The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  R  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }   =>    |-  ( ( B  e.  V  /\  .+  e.  W  /\  .x.  e.  X )  ->  .x.  =  ( .r `  R ) )
 
Theoremstarvndx 13046 Index value of the df-starv 12999 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( *r `  ndx )  =  4
 
Theoremstarvid 13047 Utility theorem: index-independent form of df-starv 12999. (Contributed by Mario Carneiro, 6-Oct-2013.)
 |-  *r  = Slot  ( *r `  ndx )
 
Theoremstarvslid 13048 Slot property of  *r. (Contributed by Jim Kingdon, 4-Feb-2023.)
 |-  ( *r  = Slot 
 ( *r `  ndx )  /\  ( *r `  ndx )  e.  NN )
 
Theoremstarvndxnbasendx 13049 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( *r `  ndx )  =/=  ( Base `  ndx )
 
Theoremstarvndxnplusgndx 13050 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( *r `  ndx )  =/=  ( +g  `  ndx )
 
Theoremstarvndxnmulrndx 13051 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( *r `  ndx )  =/=  ( .r `  ndx )
 
Theoremressmulrg 13052  .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  S  =  ( Rs  A )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( A  e.  V  /\  R  e.  W )  ->  .x.  =  ( .r `  S ) )
 
Theoremsrngstrd 13053 A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .x.  e.  X )   &    |-  ( ph  ->  .*  e.  Y )   =>    |-  ( ph  ->  R Struct  <. 1 ,  4 >.
 )
 
Theoremsrngbased 13054 The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .x.  e.  X )   &    |-  ( ph  ->  .*  e.  Y )   =>    |-  ( ph  ->  B  =  ( Base `  R ) )
 
Theoremsrngplusgd 13055 The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .x.  e.  X )   &    |-  ( ph  ->  .*  e.  Y )   =>    |-  ( ph  ->  .+  =  ( +g  `  R ) )
 
Theoremsrngmulrd 13056 The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .x.  e.  X )   &    |-  ( ph  ->  .*  e.  Y )   =>    |-  ( ph  ->  .x. 
 =  ( .r `  R ) )
 
Theoremsrnginvld 13057 The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .x.  e.  X )   &    |-  ( ph  ->  .*  e.  Y )   =>    |-  ( ph  ->  .*  =  ( *r `
  R ) )
 
Theoremscandx 13058 Index value of the df-sca 13000 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  (Scalar `  ndx )  =  5
 
Theoremscaid 13059 Utility theorem: index-independent form of scalar df-sca 13000. (Contributed by Mario Carneiro, 19-Jun-2014.)
 |- Scalar  = Slot  (Scalar `  ndx )
 
Theoremscaslid 13060 Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.)
 |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
 
Theoremscandxnbasendx 13061 The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
 |-  (Scalar `  ndx )  =/=  ( Base `  ndx )
 
Theoremscandxnplusgndx 13062 The slot for the scalar field is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  (Scalar `  ndx )  =/=  ( +g  `  ndx )
 
Theoremscandxnmulrndx 13063 The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  (Scalar `  ndx )  =/=  ( .r `  ndx )
 
Theoremvscandx 13064 Index value of the df-vsca 13001 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( .s `  ndx )  =  6
 
Theoremvscaid 13065 Utility theorem: index-independent form of scalar product df-vsca 13001. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |- 
 .s  = Slot  ( .s ` 
 ndx )
 
Theoremvscandxnbasendx 13066 The slot for the scalar product is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( .s `  ndx )  =/=  ( Base `  ndx )
 
Theoremvscandxnplusgndx 13067 The slot for the scalar product is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( .s `  ndx )  =/=  ( +g  `  ndx )
 
Theoremvscandxnmulrndx 13068 The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( .s `  ndx )  =/=  ( .r `  ndx )
 
Theoremvscandxnscandx 13069 The slot for the scalar product is not the slot for the scalar field in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( .s `  ndx )  =/=  (Scalar `  ndx )
 
Theoremvscaslid 13070 Slot property of  .s. (Contributed by Jim Kingdon, 5-Feb-2023.)
 |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
 
Theoremlmodstrd 13071 A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  X )   &    |-  ( ph  ->  F  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   =>    |-  ( ph  ->  W Struct  <.
 1 ,  6 >.
 )
 
Theoremlmodbased 13072 The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  X )   &    |-  ( ph  ->  F  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   =>    |-  ( ph  ->  B  =  ( Base `  W )
 )
 
Theoremlmodplusgd 13073 The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  X )   &    |-  ( ph  ->  F  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   =>    |-  ( ph  ->  .+  =  ( +g  `  W )
 )
 
Theoremlmodscad 13074 The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  X )   &    |-  ( ph  ->  F  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   =>    |-  ( ph  ->  F  =  (Scalar `  W )
 )
 
Theoremlmodvscad 13075 The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  X )   &    |-  ( ph  ->  F  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   =>    |-  ( ph  ->  .x.  =  ( .s `  W ) )
 
Theoremipndx 13076 Index value of the df-ip 13002 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( .i `  ndx )  =  8
 
Theoremipid 13077 Utility theorem: index-independent form of df-ip 13002. (Contributed by Mario Carneiro, 6-Oct-2013.)
 |- 
 .i  = Slot  ( .i ` 
 ndx )
 
Theoremipslid 13078 Slot property of  .i. (Contributed by Jim Kingdon, 7-Feb-2023.)
 |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
 
Theoremipndxnbasendx 13079 The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
 |-  ( .i `  ndx )  =/=  ( Base `  ndx )
 
Theoremipndxnplusgndx 13080 The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( .i `  ndx )  =/=  ( +g  `  ndx )
 
Theoremipndxnmulrndx 13081 The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( .i `  ndx )  =/=  ( .r `  ndx )
 
Theoremslotsdifipndx 13082 The slot for the scalar is not the index of other slots. (Contributed by AV, 12-Nov-2024.)
 |-  ( ( .s `  ndx )  =/=  ( .i `  ndx )  /\  (Scalar `  ndx )  =/=  ( .i `  ndx ) )
 
Theoremipsstrd 13083 A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  A Struct  <.
 1 ,  8 >.
 )
 
Theoremipsbased 13084 The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  B  =  ( Base `  A )
 )
 
Theoremipsaddgd 13085 The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  .+  =  ( +g  `  A )
 )
 
Theoremipsmulrd 13086 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  .X.  =  ( .r `  A ) )
 
Theoremipsscad 13087 The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  S  =  (Scalar `  A )
 )
 
Theoremipsvscad 13088 The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  .x.  =  ( .s `  A ) )
 
Theoremipsipd 13089 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  I  =  ( .i `  A ) )
 
Theoremressscag 13090 Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  H  =  ( Gs  A )   &    |-  F  =  (Scalar `  G )   =>    |-  ( ( G  e.  X  /\  A  e.  V )  ->  F  =  (Scalar `  H ) )
 
Theoremressvscag 13091  .s is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  H  =  ( Gs  A )   &    |-  .x.  =  ( .s `  G )   =>    |-  ( ( G  e.  X  /\  A  e.  V )  ->  .x.  =  ( .s `  H ) )
 
Theoremressipg 13092 The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.)
 |-  H  =  ( Gs  A )   &    |-  .,  =  ( .i `  G )   =>    |-  ( ( G  e.  X  /\  A  e.  V )  ->  .,  =  ( .i `  H ) )
 
Theoremtsetndx 13093 Index value of the df-tset 13003 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  (TopSet `  ndx )  =  9
 
Theoremtsetid 13094 Utility theorem: index-independent form of df-tset 13003. (Contributed by NM, 20-Oct-2012.)
 |- TopSet  = Slot  (TopSet `  ndx )
 
Theoremtsetslid 13095 Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.)
 |-  (TopSet  = Slot  (TopSet `  ndx )  /\  (TopSet `  ndx )  e.  NN )
 
Theoremtsetndxnn 13096 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  e. 
 NN
 
Theorembasendxlttsetndx 13097 The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  ( Base `  ndx )  < 
 (TopSet `  ndx )
 
Theoremtsetndxnbasendx 13098 The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( Base `  ndx )
 
Theoremtsetndxnplusgndx 13099 The slot for the topology is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( +g  `  ndx )
 
Theoremtsetndxnmulrndx 13100 The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( .r `  ndx )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >