HomeHome Intuitionistic Logic Explorer
Theorem List (p. 131 of 150)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13001-13100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmulgnn0subcl 13001* Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ( ph  /\  x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
 )  e.  S )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  .0. 
 e.  S )   =>    |-  ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
 
Theoremmulgsubcl 13002* Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ( ph  /\  x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
 )  e.  S )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  .0. 
 e.  S )   &    |-  I  =  ( invg `  G )   &    |-  ( ( ph  /\  x  e.  S ) 
 ->  ( I `  x )  e.  S )   =>    |-  (
 ( ph  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
 
Theoremmulgnncl 13003 Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e. Mgm  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgnn0cl 13004 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgcl 13005 Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgneg 13006 Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
 
Theoremmulgnegneg 13007 The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( I `  ( -u N  .x.  X )
 )  =  ( N 
 .x.  X ) )
 
Theoremmulgm1 13008 Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 20-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( -u 1  .x.  X )  =  ( I `  X ) )
 
Theoremmulgnn0cld 13009 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 13004. (Contributed by SN, 1-Feb-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgcld 13010 Deduction associated with mulgcl 13005. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgaddcomlem 13011 Lemma for mulgaddcom 13012. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  (
 ( y  .x.  X )  .+  X )  =  ( X  .+  (
 y  .x.  X )
 ) )  ->  (
 ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X )
 ) )
 
Theoremmulgaddcom 13012 The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( ( N 
 .x.  X )  .+  X )  =  ( X  .+  ( N  .x.  X ) ) )
 
Theoremmulginvcom 13013 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  ( I `  X ) )  =  ( I `  ( N  .x.  X ) ) )
 
Theoremmulginvinv 13014 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( I `  ( N  .x.  ( I `  X ) ) )  =  ( N  .x.  X ) )
 
Theoremmulgnn0z 13015 A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0 )  ->  ( N  .x.  .0.  )  =  .0.  )
 
Theoremmulgz 13016 A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( N  .x.  .0.  )  =  .0.  )
 
Theoremmulgnndir 13017 Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgnn0dir 13018 Sum of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgdirlem 13019 Lemma for mulgdir 13020. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N )  e. 
 NN0 )  ->  (
 ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N 
 .x.  X ) ) )
 
Theoremmulgdir 13020 Sum of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M 
 .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgp1 13021 Group multiple (exponentiation) operation at a successor, extended to  ZZ. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( ( N  +  1 )  .x.  X )  =  ( ( N  .x.  X )  .+  X ) )
 
Theoremmulgneg2 13022 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `  X ) ) )
 
Theoremmulgnnass 13023 Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
 )  ->  ( ( M  x.  N )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgnn0ass 13024 Product of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) )
 
Theoremmulgass 13025 Product of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
 )  ->  ( ( M  x.  N )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgassr 13026 Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
 )  ->  ( ( N  x.  M )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgmodid 13027 Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M  .x.  X )  =  .0.  ) ) 
 ->  ( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )
 
Theoremmulgsubdir 13028 Distribution of group multiples over subtraction for group elements, subdir 8345 analog. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  -  N )  .x.  X )  =  ( ( M 
 .x.  X )  .-  ( N  .x.  X ) ) )
 
Theoremmhmmulg 13029 A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .X.  =  (.g `  H )   =>    |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X ) ) )
 
Theoremmulgpropdg 13030* Two structures with the same group-nature have the same group multiple function.  K is expected to either be  _V (when strong equality is available) or  B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  ( ph  ->  .x.  =  (.g `  G ) )   &    |-  ( ph  ->  .X.  =  (.g `  H ) )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  H  e.  W )   &    |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  B  =  ( Base `  H )
 )   &    |-  ( ph  ->  B  C_  K )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  K ) )  ->  ( x ( +g  `  G ) y )  e.  K )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  K ) )  ->  ( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )   =>    |-  ( ph  ->  .x.  =  .X.  )
 
Theoremsubmmulgcl 13031 Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  .xb  =  (.g `  G )   =>    |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S ) 
 ->  ( N  .xb  X )  e.  S )
 
7.2.3  Subgroups and Quotient groups
 
Syntaxcsubg 13032 Extend class notation with all subgroups of a group.
 class SubGrp
 
Syntaxcnsg 13033 Extend class notation with all normal subgroups of a group.
 class NrmSGrp
 
Syntaxcqg 13034 Quotient group equivalence class.
 class ~QG
 
Definitiondf-subg 13035* Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13054), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13049), contains the neutral element of the group (see subg0 13045) and contains the inverses for all of its elements (see subginvcl 13048). (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( w ↾s  s )  e.  Grp } )
 
Definitiondf-nsg 13036* Define the equivalence relation in a quotient ring or quotient group (where  i is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |- NrmSGrp  =  ( w  e.  Grp  |->  { s  e.  (SubGrp `  w )  |  [. ( Base `  w )  /  b ]. [. ( +g  `  w )  /  p ]. A. x  e.  b  A. y  e.  b  ( ( x p y )  e.  s  <->  ( y p x )  e.  s
 ) } )
 
Definitiondf-eqg 13037* Define the equivalence relation in a group generated by a subgroup. More precisely, if  G is a group and  H is a subgroup, then  G ~QG  H is the equivalence relation on  G associated with the left cosets of  H. A typical application of this definition is the construction of the quotient group (resp. ring) of a group (resp. ring) by a normal subgroup (resp. two-sided ideal). (Contributed by Mario Carneiro, 15-Jun-2015.)
 |- ~QG  =  ( r  e.  _V ,  i  e.  _V  |->  {
 <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
 ( ( invg `  r ) `  x ) ( +g  `  r
 ) y )  e.  i ) } )
 
Theoremissubg 13038 The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   =>    |-  ( S  e.  (SubGrp `  G )  <->  ( G  e.  Grp  /\  S  C_  B  /\  ( G ↾s  S )  e.  Grp ) )
 
Theoremsubgss 13039 A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  C_  B )
 
Theoremsubgid 13040 A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G ) )
 
Theoremsubgex 13041 The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
 |-  ( G  e.  Grp  ->  (SubGrp `  G )  e. 
 _V )
 
Theoremsubggrp 13042 A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  H  =  ( G ↾s  S )   =>    |-  ( S  e.  (SubGrp `  G )  ->  H  e.  Grp )
 
Theoremsubgbas 13043 The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  H  =  ( G ↾s  S )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  =  ( Base `  H )
 )
 
Theoremsubgrcl 13044 Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  ( S  e.  (SubGrp `  G )  ->  G  e.  Grp )
 
Theoremsubg0 13045 A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  H  =  ( G ↾s  S )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  .0.  =  ( 0g `  H ) )
 
Theoremsubginv 13046 The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  H  =  ( G ↾s  S )   &    |-  I  =  ( invg `  G )   &    |-  J  =  ( invg `  H )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( I `  X )  =  ( J `  X ) )
 
Theoremsubg0cl 13047 The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  .0.  e.  S )
 
Theoremsubginvcl 13048 The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  I  =  ( invg `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( I `  X )  e.  S )
 
Theoremsubgcl 13049 A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- 
 .+  =  ( +g  `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )
 
Theoremsubgsubcl 13050 A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  .-  =  ( -g `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .-  Y )  e.  S )
 
Theoremsubgsub 13051 The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  .-  =  ( -g `  G )   &    |-  H  =  ( G ↾s  S )   &    |-  N  =  (
 -g `  H )   =>    |-  (
 ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X 
 .-  Y )  =  ( X N Y ) )
 
Theoremsubgmulgcl 13052 Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |- 
 .x.  =  (.g `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
 
Theoremsubgmulg 13053 A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
 |- 
 .x.  =  (.g `  G )   &    |-  H  =  ( G ↾s  S )   &    |-  .xb  =  (.g `  H )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  ( N  .xb  X ) )
 
Theoremissubg2m 13054* Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G )  <->  ( S  C_  B  /\  E. u  u  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  ( I `  x )  e.  S ) ) ) )
 
Theoremissubgrpd2 13055* Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
 |-  ( ph  ->  S  =  ( I ↾s  D ) )   &    |-  ( ph  ->  .0.  =  ( 0g `  I ) )   &    |-  ( ph  ->  .+  =  (
 +g  `  I )
 )   &    |-  ( ph  ->  D  C_  ( Base `  I )
 )   &    |-  ( ph  ->  .0.  e.  D )   &    |-  ( ( ph  /\  x  e.  D  /\  y  e.  D )  ->  ( x  .+  y
 )  e.  D )   &    |-  ( ( ph  /\  x  e.  D )  ->  (
 ( invg `  I
 ) `  x )  e.  D )   &    |-  ( ph  ->  I  e.  Grp )   =>    |-  ( ph  ->  D  e.  (SubGrp `  I
 ) )
 
Theoremissubgrpd 13056* Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.)
 |-  ( ph  ->  S  =  ( I ↾s  D ) )   &    |-  ( ph  ->  .0.  =  ( 0g `  I ) )   &    |-  ( ph  ->  .+  =  (
 +g  `  I )
 )   &    |-  ( ph  ->  D  C_  ( Base `  I )
 )   &    |-  ( ph  ->  .0.  e.  D )   &    |-  ( ( ph  /\  x  e.  D  /\  y  e.  D )  ->  ( x  .+  y
 )  e.  D )   &    |-  ( ( ph  /\  x  e.  D )  ->  (
 ( invg `  I
 ) `  x )  e.  D )   &    |-  ( ph  ->  I  e.  Grp )   =>    |-  ( ph  ->  S  e.  Grp )
 
Theoremissubg3 13057* A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  I  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G )  <->  ( S  e.  (SubMnd `  G )  /\  A. x  e.  S  ( I `  x )  e.  S ) ) )
 
Theoremissubg4m 13058* A subgroup is an inhabited subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( G  e.  Grp 
 ->  ( S  e.  (SubGrp `  G )  <->  ( S  C_  B  /\  E. w  w  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S ) ) )
 
Theoremgrpissubg 13059 If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   =>    |-  ( ( G  e.  Grp  /\  H  e.  Grp )  ->  ( ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) 
 ->  S  e.  (SubGrp `  G ) ) )
 
Theoremresgrpisgrp 13060 If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   =>    |-  ( ( G  e.  Grp  /\  H  e.  Grp )  ->  ( ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) 
 ->  ( G ↾s  S )  e.  Grp ) )
 
Theoremsubgsubm 13061 A subgroup is a submonoid. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( S  e.  (SubGrp `  G )  ->  S  e.  (SubMnd `  G )
 )
 
Theoremsubsubg 13062 A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
 |-  H  =  ( G ↾s  S )   =>    |-  ( S  e.  (SubGrp `  G )  ->  ( A  e.  (SubGrp `  H ) 
 <->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) ) )
 
Theoremsubgintm 13063* The intersection of an inhabited collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  G ) )
 
Theorem0subg 13064 The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G ) )
 
Theoremtrivsubgd 13065 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   &    |-  ( ph  ->  A  e.  (SubGrp `  G )
 )   =>    |-  ( ph  ->  A  =  B )
 
Theoremtrivsubgsnd 13066 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (SubGrp `  G )  =  { B } )
 
Theoremisnsg 13067* Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (NrmSGrp `  G )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  (
 ( x  .+  y
 )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
 
Theoremisnsg2 13068* Weaken the condition of isnsg 13067 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (NrmSGrp `  G )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  (
 ( x  .+  y
 )  e.  S  ->  ( y  .+  x )  e.  S ) ) )
 
Theoremnsgbi 13069 Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  A  e.  X  /\  B  e.  X ) 
 ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
 
Theoremnsgsubg 13070 A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  ( S  e.  (NrmSGrp `  G )  ->  S  e.  (SubGrp `  G )
 )
 
Theoremnsgconj 13071 The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  A  e.  X  /\  B  e.  S )  ->  ( ( A  .+  B )  .-  A )  e.  S )
 
Theoremisnsg3 13072* A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( S  e.  (NrmSGrp `  G )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
 ( x  .+  y
 )  .-  x )  e.  S ) )
 
Theoremelnmz 13073* Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   =>    |-  ( A  e.  N  <->  ( A  e.  X  /\  A. z  e.  X  ( ( A  .+  z
 )  e.  S  <->  ( z  .+  A )  e.  S ) ) )
 
Theoremnmzbi 13074* Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   =>    |-  ( ( A  e.  N  /\  B  e.  X )  ->  ( ( A 
 .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
 
Theoremnmzsubg 13075* The normalizer NG(S) of a subset  S of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
 )
 
Theoremssnmz 13076* A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  C_  N )
 
Theoremisnsg4 13077* A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (NrmSGrp `  G ) 
 <->  ( S  e.  (SubGrp `  G )  /\  N  =  X ) )
 
Theoremnmznsg 13078* Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  H  =  ( G ↾s  N )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  e.  (NrmSGrp `  H )
 )
 
Theorem0nsg 13079 The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  {  .0.  }  e.  (NrmSGrp `  G ) )
 
Theoremnsgid 13080 The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  B  e.  (NrmSGrp `  G ) )
 
Theorem0idnsgd 13081 The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  { {  .0.  } ,  B }  C_  (NrmSGrp `  G )
 )
 
Theoremtrivnsgd 13082 The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (NrmSGrp `  G )  =  { B } )
 
Theoremtriv1nsgd 13083 A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (NrmSGrp `  G )  ~~  1o )
 
Theorem1nsgtrivd 13084 A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  (NrmSGrp `  G )  ~~  1o )   =>    |-  ( ph  ->  B  =  {  .0.  } )
 
Theoremreleqgg 13085 The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  R  =  ( G ~QG  S )   =>    |-  ( ( G  e.  V  /\  S  e.  W )  ->  Rel  R )
 
Theoremeqgfval 13086* Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |- 
 .+  =  ( +g  `  G )   &    |-  R  =  ( G ~QG 
 S )   =>    |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y )  e.  S ) }
 )
 
Theoremeqgval 13087 Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |- 
 .+  =  ( +g  `  G )   &    |-  R  =  ( G ~QG 
 S )   =>    |-  ( ( G  e.  V  /\  S  C_  X )  ->  ( A R B 
 <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B )  e.  S ) ) )
 
Theoremeqger 13088 The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   =>    |-  ( Y  e.  (SubGrp `  G )  ->  .~  Er  X )
 
Theoremeqglact 13089* A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( x  e.  X  |->  ( A 
 .+  x ) )
 " Y ) )
 
Theoremeqgid 13090 The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( Y  e.  (SubGrp `  G )  ->  [  .0.  ] 
 .~  =  Y )
 
Theoremeqgen 13091 Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   =>    |-  ( ( Y  e.  (SubGrp `  G )  /\  A  e.  ( X /.  .~  ) )  ->  Y  ~~  A )
 
Theoremeqgcpbl 13092 The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( Y  e.  (NrmSGrp `  G )  ->  ( ( A  .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C 
 .+  D ) ) )
 
7.2.4  Abelian groups
 
7.2.4.1  Definition and basic properties
 
Syntaxccmn 13093 Extend class notation with class of all commutative monoids.
 class CMnd
 
Syntaxcabl 13094 Extend class notation with class of all Abelian groups.
 class  Abel
 
Definitiondf-cmn 13095* Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |- CMnd  =  { g  e.  Mnd  | 
 A. a  e.  ( Base `  g ) A. b  e.  ( Base `  g ) ( a ( +g  `  g
 ) b )  =  ( b ( +g  `  g ) a ) }
 
Definitiondf-abl 13096 Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |- 
 Abel  =  ( Grp  i^i CMnd )
 
Theoremisabl 13097 The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
 |-  ( G  e.  Abel  <->  ( G  e.  Grp  /\  G  e. CMnd ) )
 
Theoremablgrp 13098 An Abelian group is a group. (Contributed by NM, 26-Aug-2011.)
 |-  ( G  e.  Abel  ->  G  e.  Grp )
 
Theoremablgrpd 13099 An Abelian group is a group, deduction form of ablgrp 13098. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  G  e.  Abel )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremablcmn 13100 An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( G  e.  Abel  ->  G  e. CMnd )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >