Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-mgp | Unicode version |
Description: Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and we get a group if we restrict to the elements that have inverses. This allows us to formalize such notions as "the multiplication operation of a ring is a monoid" or "the multiplicative identity" in terms of the identity of a monoid (df-ur 12936). (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
df-mgp | mulGrp sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmgp 12925 | . 2 mulGrp | |
2 | vw | . . 3 | |
3 | cvv 2735 | . . 3 | |
4 | 2 | cv 1352 | . . . 4 |
5 | cnx 12425 | . . . . . 6 | |
6 | cplusg 12492 | . . . . . 6 | |
7 | 5, 6 | cfv 5208 | . . . . 5 |
8 | cmulr 12493 | . . . . . 6 | |
9 | 4, 8 | cfv 5208 | . . . . 5 |
10 | 7, 9 | cop 3592 | . . . 4 |
11 | csts 12426 | . . . 4 sSet | |
12 | 4, 10, 11 | co 5865 | . . 3 sSet |
13 | 2, 3, 12 | cmpt 4059 | . 2 sSet |
14 | 1, 13 | wceq 1353 | 1 mulGrp sSet |
Colors of variables: wff set class |
This definition is referenced by: fnmgp 12927 mgpvalg 12928 |
Copyright terms: Public domain | W3C validator |