| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpvalg | Unicode version | ||
| Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.) |
| Ref | Expression |
|---|---|
| mgpval.1 |
|
| mgpval.2 |
|
| Ref | Expression |
|---|---|
| mgpvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpval.1 |
. 2
| |
| 2 | df-mgp 13798 |
. . 3
| |
| 3 | id 19 |
. . . 4
| |
| 4 | fveq2 5599 |
. . . . . 6
| |
| 5 | mgpval.2 |
. . . . . 6
| |
| 6 | 4, 5 | eqtr4di 2258 |
. . . . 5
|
| 7 | 6 | opeq2d 3840 |
. . . 4
|
| 8 | 3, 7 | oveq12d 5985 |
. . 3
|
| 9 | elex 2788 |
. . 3
| |
| 10 | plusgslid 13059 |
. . . . . 6
| |
| 11 | 10 | simpri 113 |
. . . . 5
|
| 12 | 11 | a1i 9 |
. . . 4
|
| 13 | mulrslid 13079 |
. . . . . 6
| |
| 14 | 13 | slotex 12974 |
. . . . 5
|
| 15 | 5, 14 | eqeltrid 2294 |
. . . 4
|
| 16 | setsex 12979 |
. . . 4
| |
| 17 | 12, 15, 16 | mpd3an23 1352 |
. . 3
|
| 18 | 2, 8, 9, 17 | fvmptd3 5696 |
. 2
|
| 19 | 1, 18 | eqtrid 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-sets 12954 df-plusg 13037 df-mulr 13038 df-mgp 13798 |
| This theorem is referenced by: mgpplusgg 13801 mgpex 13802 mgpbasg 13803 mgpscag 13804 mgptsetg 13805 mgpdsg 13807 mgpress 13808 |
| Copyright terms: Public domain | W3C validator |