ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-plq0 Unicode version

Definition df-plq0 7389
Description: Define addition on nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
Assertion
Ref Expression
df-plq0  |- +Q0  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
Distinct variable group:    x, y, z, w, v, u, f

Detailed syntax breakdown of Definition df-plq0
StepHypRef Expression
1 cplq0 7251 . 2  class +Q0
2 vx . . . . . . 7  setvar  x
32cv 1347 . . . . . 6  class  x
4 cnq0 7249 . . . . . 6  class Q0
53, 4wcel 2141 . . . . 5  wff  x  e. Q0
6 vy . . . . . . 7  setvar  y
76cv 1347 . . . . . 6  class  y
87, 4wcel 2141 . . . . 5  wff  y  e. Q0
95, 8wa 103 . . . 4  wff  ( x  e. Q0  /\  y  e. Q0 )
10 vw . . . . . . . . . . . . . 14  setvar  w
1110cv 1347 . . . . . . . . . . . . 13  class  w
12 vv . . . . . . . . . . . . . 14  setvar  v
1312cv 1347 . . . . . . . . . . . . 13  class  v
1411, 13cop 3586 . . . . . . . . . . . 12  class  <. w ,  v >.
15 ceq0 7248 . . . . . . . . . . . 12  class ~Q0
1614, 15cec 6511 . . . . . . . . . . 11  class  [ <. w ,  v >. ] ~Q0
173, 16wceq 1348 . . . . . . . . . 10  wff  x  =  [ <. w ,  v
>. ] ~Q0
18 vu . . . . . . . . . . . . . 14  setvar  u
1918cv 1347 . . . . . . . . . . . . 13  class  u
20 vf . . . . . . . . . . . . . 14  setvar  f
2120cv 1347 . . . . . . . . . . . . 13  class  f
2219, 21cop 3586 . . . . . . . . . . . 12  class  <. u ,  f >.
2322, 15cec 6511 . . . . . . . . . . 11  class  [ <. u ,  f >. ] ~Q0
247, 23wceq 1348 . . . . . . . . . 10  wff  y  =  [ <. u ,  f
>. ] ~Q0
2517, 24wa 103 . . . . . . . . 9  wff  ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )
26 vz . . . . . . . . . . 11  setvar  z
2726cv 1347 . . . . . . . . . 10  class  z
28 comu 6393 . . . . . . . . . . . . . 14  class  .o
2911, 21, 28co 5853 . . . . . . . . . . . . 13  class  ( w  .o  f )
3013, 19, 28co 5853 . . . . . . . . . . . . 13  class  ( v  .o  u )
31 coa 6392 . . . . . . . . . . . . 13  class  +o
3229, 30, 31co 5853 . . . . . . . . . . . 12  class  ( ( w  .o  f )  +o  ( v  .o  u ) )
3313, 21, 28co 5853 . . . . . . . . . . . 12  class  ( v  .o  f )
3432, 33cop 3586 . . . . . . . . . . 11  class  <. (
( w  .o  f
)  +o  ( v  .o  u ) ) ,  ( v  .o  f ) >.
3534, 15cec 6511 . . . . . . . . . 10  class  [ <. ( ( w  .o  f
)  +o  ( v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0
3627, 35wceq 1348 . . . . . . . . 9  wff  z  =  [ <. ( ( w  .o  f )  +o  ( v  .o  u
) ) ,  ( v  .o  f )
>. ] ~Q0
3725, 36wa 103 . . . . . . . 8  wff  ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  )
3837, 20wex 1485 . . . . . . 7  wff  E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  )
3938, 18wex 1485 . . . . . 6  wff  E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  )
4039, 12wex 1485 . . . . 5  wff  E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  ( v  .o  u
) ) ,  ( v  .o  f )
>. ] ~Q0  )
4140, 10wex 1485 . . . 4  wff  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  )
429, 41wa 103 . . 3  wff  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) )
4342, 2, 6, 26coprab 5854 . 2  class  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
441, 43wceq 1348 1  wff +Q0  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
Colors of variables: wff set class
This definition is referenced by:  dfplq0qs  7392
  Copyright terms: Public domain W3C validator