| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfplq0qs | Unicode version | ||
| Description: Addition on nonnegative fractions. This definition is similar to df-plq0 7542 but expands Q0. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| dfplq0qs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plq0 7542 |
. 2
| |
| 2 | df-nq0 7540 |
. . . . . 6
| |
| 3 | 2 | eleq2i 2272 |
. . . . 5
|
| 4 | 2 | eleq2i 2272 |
. . . . 5
|
| 5 | 3, 4 | anbi12i 460 |
. . . 4
|
| 6 | 5 | anbi1i 458 |
. . 3
|
| 7 | 6 | oprabbii 6002 |
. 2
|
| 8 | 1, 7 | eqtri 2226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-oprab 5950 df-nq0 7540 df-plq0 7542 |
| This theorem is referenced by: addnnnq0 7564 |
| Copyright terms: Public domain | W3C validator |