ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfplq0qs Unicode version

Theorem dfplq0qs 7497
Description: Addition on nonnegative fractions. This definition is similar to df-plq0 7494 but expands Q0. (Contributed by Jim Kingdon, 24-Nov-2019.)
Assertion
Ref Expression
dfplq0qs  |- +Q0  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
Distinct variable group:    x, y, z, w, v, u, f

Proof of Theorem dfplq0qs
StepHypRef Expression
1 df-plq0 7494 . 2  |- +Q0  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
2 df-nq0 7492 . . . . . 6  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
32eleq2i 2263 . . . . 5  |-  ( x  e. Q0  <->  x  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
42eleq2i 2263 . . . . 5  |-  ( y  e. Q0  <->  y  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
53, 4anbi12i 460 . . . 4  |-  ( ( x  e. Q0  /\  y  e. Q0 )  <->  ( x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
65anbi1i 458 . . 3  |-  ( ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) )  <->  ( ( x  e.  ( ( om 
X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) )
76oprabbii 5977 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
81, 7eqtri 2217 1  |- +Q0  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   <.cop 3625   omcom 4626    X. cxp 4661  (class class class)co 5922   {coprab 5923    +o coa 6471    .o comu 6472   [cec 6590   /.cqs 6591   N.cnpi 7339   ~Q0 ceq0 7353  Q0cnq0 7354   +Q0 cplq0 7356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-oprab 5926  df-nq0 7492  df-plq0 7494
This theorem is referenced by:  addnnnq0  7516
  Copyright terms: Public domain W3C validator