| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfplq0qs | Unicode version | ||
| Description: Addition on nonnegative fractions. This definition is similar to df-plq0 7494 but expands Q0. (Contributed by Jim Kingdon, 24-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| dfplq0qs | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-plq0 7494 | 
. 2
 | |
| 2 | df-nq0 7492 | 
. . . . . 6
 | |
| 3 | 2 | eleq2i 2263 | 
. . . . 5
 | 
| 4 | 2 | eleq2i 2263 | 
. . . . 5
 | 
| 5 | 3, 4 | anbi12i 460 | 
. . . 4
 | 
| 6 | 5 | anbi1i 458 | 
. . 3
 | 
| 7 | 6 | oprabbii 5977 | 
. 2
 | 
| 8 | 1, 7 | eqtri 2217 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-oprab 5926 df-nq0 7492 df-plq0 7494 | 
| This theorem is referenced by: addnnnq0 7516 | 
| Copyright terms: Public domain | W3C validator |