Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfplq0qs | Unicode version |
Description: Addition on nonnegative fractions. This definition is similar to df-plq0 7389 but expands Q0. (Contributed by Jim Kingdon, 24-Nov-2019.) |
Ref | Expression |
---|---|
dfplq0qs | +Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plq0 7389 | . 2 +Q0 Q0 Q0 ~Q0 ~Q0 ~Q0 | |
2 | df-nq0 7387 | . . . . . 6 Q0 ~Q0 | |
3 | 2 | eleq2i 2237 | . . . . 5 Q0 ~Q0 |
4 | 2 | eleq2i 2237 | . . . . 5 Q0 ~Q0 |
5 | 3, 4 | anbi12i 457 | . . . 4 Q0 Q0 ~Q0 ~Q0 |
6 | 5 | anbi1i 455 | . . 3 Q0 Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 |
7 | 6 | oprabbii 5908 | . 2 Q0 Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 |
8 | 1, 7 | eqtri 2191 | 1 +Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wex 1485 wcel 2141 cop 3586 com 4574 cxp 4609 (class class class)co 5853 coprab 5854 coa 6392 comu 6393 cec 6511 cqs 6512 cnpi 7234 ~Q0 ceq0 7248 Q0cnq0 7249 +Q0 cplq0 7251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-oprab 5857 df-nq0 7387 df-plq0 7389 |
This theorem is referenced by: addnnnq0 7411 |
Copyright terms: Public domain | W3C validator |