HomeHome Intuitionistic Logic Explorer
Theorem List (p. 77 of 116)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7601-7700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremreaddcan 7601 Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( C  +  A )  =  ( C  +  B )  <->  A  =  B ) )
 
Theorem00id 7602  0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  ( 0  +  0 )  =  0
 
Theoremaddid1i 7603  0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
 |-  A  e.  CC   =>    |-  ( A  +  0 )  =  A
 
Theoremaddid2i 7604  0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.)
 |-  A  e.  CC   =>    |-  ( 0  +  A )  =  A
 
Theoremaddcomi 7605 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  +  B )  =  ( B  +  A )
 
Theoremaddcomli 7606 Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  ( A  +  B )  =  C   =>    |-  ( B  +  A )  =  C
 
Theoremmul12i 7607 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C ) )
 
Theoremmul32i 7608 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  x.  B )  x.  C )  =  ( ( A  x.  C )  x.  B )
 
Theoremmul4i 7609 Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   =>    |-  ( ( A  x.  B )  x.  ( C  x.  D ) )  =  ( ( A  x.  C )  x.  ( B  x.  D ) )
 
Theoremaddid1d 7610  0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  +  0 )  =  A )
 
Theoremaddid2d 7611  0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 0  +  A )  =  A )
 
Theoremaddcomd 7612 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  +  B )  =  ( B  +  A ) )
 
Theoremmul12d 7613 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C ) ) )
 
Theoremmul32d 7614 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  x.  B )  x.  C )  =  ( ( A  x.  C )  x.  B ) )
 
Theoremmul31d 7615 Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  x.  B )  x.  C )  =  ( ( C  x.  B )  x.  A ) )
 
Theoremmul4d 7616 Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  x.  B )  x.  ( C  x.  D ) )  =  ( ( A  x.  C )  x.  ( B  x.  D ) ) )
 
Theoremmuladd11r 7617 A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  1 )  x.  ( B  +  1 ) )  =  ( ( ( A  x.  B )  +  ( A  +  B )
 )  +  1 ) )
 
Theoremcomraddd 7618 Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  A  =  ( B  +  C ) )   =>    |-  ( ph  ->  A  =  ( C  +  B ) )
 
3.3  Real and complex numbers - basic operations
 
3.3.1  Addition
 
Theoremadd12 7619 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 11-May-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C )
 )  =  ( B  +  ( A  +  C ) ) )
 
Theoremadd32 7620 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  C )  =  ( ( A  +  C )  +  B ) )
 
Theoremadd32r 7621 Commutative/associative law that swaps the last two terms in a triple sum, rearranging the parentheses. (Contributed by Paul Chapman, 18-May-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C )
 )  =  ( ( A  +  C )  +  B ) )
 
Theoremadd4 7622 Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  +  ( C  +  D )
 )  =  ( ( A  +  C )  +  ( B  +  D ) ) )
 
Theoremadd42 7623 Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  +  ( C  +  D )
 )  =  ( ( A  +  C )  +  ( D  +  B ) ) )
 
Theoremadd12i 7624 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( A  +  ( B  +  C ) )  =  ( B  +  ( A  +  C )
 )
 
Theoremadd32i 7625 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  +  C )  =  ( ( A  +  C )  +  B )
 
Theoremadd4i 7626 Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   =>    |-  ( ( A  +  B )  +  ( C  +  D )
 )  =  ( ( A  +  C )  +  ( B  +  D ) )
 
Theoremadd42i 7627 Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   =>    |-  ( ( A  +  B )  +  ( C  +  D )
 )  =  ( ( A  +  C )  +  ( D  +  B ) )
 
Theoremadd12d 7628 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  +  ( B  +  C ) )  =  ( B  +  ( A  +  C )
 ) )
 
Theoremadd32d 7629 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  +  C )  =  ( ( A  +  C )  +  B ) )
 
Theoremadd4d 7630 Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( B  +  D )
 ) )
 
Theoremadd42d 7631 Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( D  +  B )
 ) )
 
3.3.2  Subtraction
 
Syntaxcmin 7632 Extend class notation to include subtraction.
 class  -
 
Syntaxcneg 7633 Extend class notation to include unary minus. The symbol  -u is not a class by itself but part of a compound class definition. We do this rather than making it a formal function since it is so commonly used. Note: We use different symbols for unary minus ( -u) and subtraction cmin 7632 ( -) to prevent syntax ambiguity. For example, looking at the syntax definition co 5634, if we used the same symbol then " (  -  A  -  B ) " could mean either " -  A " minus " B", or it could represent the (meaningless) operation of classes " - " and " -  B " connected with "operation" " A". On the other hand, " ( -u A  -  B ) " is unambiguous.
 class  -u A
 
Definitiondf-sub 7634* Define subtraction. Theorem subval 7653 shows its value (and describes how this definition works), theorem subaddi 7748 relates it to addition, and theorems subcli 7737 and resubcli 7724 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
 |- 
 -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e. 
 CC  ( y  +  z )  =  x ) )
 
Definitiondf-neg 7635 Define the negative of a number (unary minus). We use different symbols for unary minus ( -u) and subtraction ( -) to prevent syntax ambiguity. See cneg 7633 for a discussion of this. (Contributed by NM, 10-Feb-1995.)
 |-  -u A  =  (
 0  -  A )
 
Theoremcnegexlem1 7636 Addition cancellation of a real number from two complex numbers. Lemma for cnegex 7639. (Contributed by Eric Schmidt, 22-May-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  =  ( A  +  C )  <->  B  =  C ) )
 
Theoremcnegexlem2 7637 Existence of a real number which produces a real number when multiplied by  _i. (Hint: zero is such a number, although we don't need to prove that yet). Lemma for cnegex 7639. (Contributed by Eric Schmidt, 22-May-2007.)
 |- 
 E. y  e.  RR  ( _i  x.  y
 )  e.  RR
 
Theoremcnegexlem3 7638* Existence of real number difference. Lemma for cnegex 7639. (Contributed by Eric Schmidt, 22-May-2007.)
 |-  ( ( b  e. 
 RR  /\  y  e.  RR )  ->  E. c  e.  RR  ( b  +  c )  =  y
 )
 
Theoremcnegex 7639* Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.)
 |-  ( A  e.  CC  ->  E. x  e.  CC  ( A  +  x )  =  0 )
 
Theoremcnegex2 7640* Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  ( A  e.  CC  ->  E. x  e.  CC  ( x  +  A )  =  0 )
 
Theoremaddcan 7641 Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  =  ( A  +  C )  <->  B  =  C ) )
 
Theoremaddcan2 7642 Cancellation law for addition. (Contributed by NM, 30-Jul-2004.) (Revised by Scott Fenton, 3-Jan-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  C )  =  ( B  +  C )  <->  A  =  B ) )
 
Theoremaddcani 7643 Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 27-Oct-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  =  ( A  +  C )  <->  B  =  C )
 
Theoremaddcan2i 7644 Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 14-May-2003.) (Revised by Scott Fenton, 3-Jan-2013.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  C )  =  ( B  +  C )  <->  A  =  B )
 
Theoremaddcand 7645 Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  =  ( A  +  C )  <->  B  =  C ) )
 
Theoremaddcan2d 7646 Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  C )  =  ( B  +  C )  <->  A  =  B ) )
 
Theoremaddcanad 7647 Cancelling a term on the left-hand side of a sum in an equality. Consequence of addcand 7645. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  ( A  +  B )  =  ( A  +  C ) )   =>    |-  ( ph  ->  B  =  C )
 
Theoremaddcan2ad 7648 Cancelling a term on the right-hand side of a sum in an equality. Consequence of addcan2d 7646. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  ( A  +  C )  =  ( B  +  C ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremaddneintrd 7649 Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 7647. Consequence of addcand 7645. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B  =/=  C )   =>    |-  ( ph  ->  ( A  +  B )  =/=  ( A  +  C ) )
 
Theoremaddneintr2d 7650 Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 7648. Consequence of addcan2d 7646. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  ( A  +  C )  =/=  ( B  +  C ) )
 
Theorem0cnALT 7651 Alternate proof of 0cn 7459. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  0  e.  CC
 
Theoremnegeu 7652* Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E! x  e. 
 CC  ( A  +  x )  =  B )
 
Theoremsubval 7653* Value of subtraction, which is the (unique) element  x such that  B  +  x  =  A. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B )  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
 
Theoremnegeq 7654 Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
 |-  ( A  =  B  -> 
 -u A  =  -u B )
 
Theoremnegeqi 7655 Equality inference for negatives. (Contributed by NM, 14-Feb-1995.)
 |-  A  =  B   =>    |-  -u A  =  -u B
 
Theoremnegeqd 7656 Equality deduction for negatives. (Contributed by NM, 14-May-1999.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  -u A  =  -u B )
 
Theoremnfnegd 7657 Deduction version of nfneg 7658. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   =>    |-  ( ph  ->  F/_ x -u A )
 
Theoremnfneg 7658 Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x -u A
 
Theoremcsbnegg 7659 Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ -u B  =  -u [_ A  /  x ]_ B )
 
Theoremsubcl 7660 Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B )  e.  CC )
 
Theoremnegcl 7661 Closure law for negative. (Contributed by NM, 6-Aug-2003.)
 |-  ( A  e.  CC  -> 
 -u A  e.  CC )
 
Theoremnegicn 7662  -u _i is a complex number (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
 |-  -u _i  e.  CC
 
Theoremsubf 7663 Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
 |- 
 -  : ( CC 
 X.  CC ) --> CC
 
Theoremsubadd 7664 Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  C  <->  ( B  +  C )  =  A ) )
 
Theoremsubadd2 7665 Relationship between subtraction and addition. (Contributed by Scott Fenton, 5-Jul-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  C  <->  ( C  +  B )  =  A ) )
 
Theoremsubsub23 7666 Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  C  <->  ( A  -  C )  =  B ) )
 
Theorempncan 7667 Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B )  =  A )
 
Theorempncan2 7668 Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  A )  =  B )
 
Theorempncan3 7669 Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
 
Theoremnpcan 7670 Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B )  =  A )
 
Theoremaddsubass 7671 Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  C )  =  ( A  +  ( B  -  C ) ) )
 
Theoremaddsub 7672 Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  C )  =  ( ( A  -  C )  +  B ) )
 
Theoremsubadd23 7673 Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  C )  =  ( A  +  ( C  -  B ) ) )
 
Theoremaddsub12 7674 Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  -  C ) )  =  ( B  +  ( A  -  C ) ) )
 
Theorem2addsub 7675 Law for subtraction and addition. (Contributed by NM, 20-Nov-2005.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( ( A  +  B )  +  C )  -  D )  =  ( (
 ( A  +  C )  -  D )  +  B ) )
 
Theoremaddsubeq4 7676 Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  =  ( C  +  D )  <->  ( C  -  A )  =  ( B  -  D ) ) )
 
Theorempncan3oi 7677 Subtraction and addition of equals. Almost but not exactly the same as pncan3i 7738 and pncan 7667, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 7773. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( ( A  +  B )  -  B )  =  A
 
Theoremmvrraddi 7678 Move RHS right addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  B  e.  CC   &    |-  C  e.  CC   &    |-  A  =  ( B  +  C )   =>    |-  ( A  -  C )  =  B
 
Theoremmvlladdi 7679 Move LHS left addition to RHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  ( A  +  B )  =  C   =>    |-  B  =  ( C  -  A )
 
Theoremsubid 7680 Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  -  A )  =  0 )
 
Theoremsubid1 7681 Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  -  0
 )  =  A )
 
Theoremnpncan 7682 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( B  -  C ) )  =  ( A  -  C ) )
 
Theoremnppcan 7683 Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( ( A  -  B )  +  C )  +  B )  =  ( A  +  C ) )
 
Theoremnnpcan 7684 Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( ( A  -  B )  -  C )  +  B )  =  ( A  -  C ) )
 
Theoremnppcan3 7685 Cancellation law for subtraction. (Contributed by Mario Carneiro, 14-Sep-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( C  +  B )
 )  =  ( A  +  C ) )
 
Theoremsubcan2 7686 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  C )  =  ( B  -  C )  <->  A  =  B ) )
 
Theoremsubeq0 7687 If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  0  <->  A  =  B ) )
 
Theoremnpncan2 7688 Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  ( B  -  A ) )  =  0
 )
 
Theoremsubsub2 7689 Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )
 
Theoremnncan 7690 Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B ) )  =  B )
 
Theoremsubsub 7691 Law for double subtraction. (Contributed by NM, 13-May-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( ( A  -  B )  +  C ) )
 
Theoremnppcan2 7692 Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  ( B  +  C ) )  +  C )  =  ( A  -  B ) )
 
Theoremsubsub3 7693 Law for double subtraction. (Contributed by NM, 27-Jul-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( ( A  +  C )  -  B ) )
 
Theoremsubsub4 7694 Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  C )  =  ( A  -  ( B  +  C ) ) )
 
Theoremsub32 7695 Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  C )  =  ( ( A  -  C )  -  B ) )
 
Theoremnnncan 7696 Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  ( B  -  C ) )  -  C )  =  ( A  -  B ) )
 
Theoremnnncan1 7697 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  ( A  -  C ) )  =  ( C  -  B ) )
 
Theoremnnncan2 7698 Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  C )  -  ( B  -  C ) )  =  ( A  -  B ) )
 
Theoremnpncan3 7699 Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( C  -  A ) )  =  ( C  -  B ) )
 
Theorempnpcan 7700 Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  ( A  +  C )
 )  =  ( B  -  C ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11584
  Copyright terms: Public domain < Previous  Next >