HomeHome Intuitionistic Logic Explorer
Theorem List (p. 77 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7601-7700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcaucvgsrlemoffres 7601* Lemma for caucvgsr 7603. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e. 
 N.  ( j  <N  k 
 ->  ( ( F `  k )  <R  ( y  +R  x )  /\  y  <R  ( ( F `
  k )  +R  x ) ) ) ) )
 
Theoremcaucvgsrlembnd 7602* Lemma for caucvgsr 7603. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k
 )  +R  x )
 ) ) ) )
 
Theoremcaucvgsr 7603* A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7513 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7602).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7598).

3. Since a signed real (element of  R.) which is greater than zero can be mapped to a positive real (element of  P.), perform that mapping on each element of the sequence and invoke caucvgprpr 7513 to get a limit (see caucvgsrlemgt1 7596).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7596).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7601). (Contributed by Jim Kingdon, 20-Jun-2021.)

 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k
 )  +R  x )
 ) ) ) )
 
Theoremltpsrprg 7604 Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  R. )  ->  ( ( C  +R  [
 <. A ,  1P >. ] 
 ~R  )  <R  ( C  +R  [ <. B ,  1P >. ]  ~R  )  <->  A 
 <P  B ) )
 
Theoremmappsrprg 7605 Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( ( A  e.  P. 
 /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  ) )
 
Theoremmap2psrprg 7606* Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( C  e.  R.  ->  ( ( C  +R  -1R )  <R  A  <->  E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
 )
 
Theoremsuplocsrlemb 7607* Lemma for suplocsr 7610. The set  B is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  A. u  e. 
 P.  A. v  e.  P.  ( u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
 
Theoremsuplocsrlempr 7608* Lemma for suplocsr 7610. The set  B has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w 
 /\  A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
 
Theoremsuplocsrlem 7609* Lemma for suplocsr 7610. The set  A has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
Theoremsuplocsr 7610* An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
Syntaxcc 7611 Class of complex numbers.
 class  CC
 
Syntaxcr 7612 Class of real numbers.
 class  RR
 
Syntaxcc0 7613 Extend class notation to include the complex number 0.
 class 
 0
 
Syntaxc1 7614 Extend class notation to include the complex number 1.
 class 
 1
 
Syntaxci 7615 Extend class notation to include the complex number i.
 class  _i
 
Syntaxcaddc 7616 Addition on complex numbers.
 class  +
 
Syntaxcltrr 7617 'Less than' predicate (defined over real subset of complex numbers).
 class  <RR
 
Syntaxcmul 7618 Multiplication on complex numbers. The token  x. is a center dot.
 class  x.
 
Definitiondf-c 7619 Define the set of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 CC  =  ( R. 
 X.  R. )
 
Definitiondf-0 7620 Define the complex number 0. (Contributed by NM, 22-Feb-1996.)
 |-  0  =  <. 0R ,  0R >.
 
Definitiondf-1 7621 Define the complex number 1. (Contributed by NM, 22-Feb-1996.)
 |-  1  =  <. 1R ,  0R >.
 
Definitiondf-i 7622 Define the complex number  _i (the imaginary unit). (Contributed by NM, 22-Feb-1996.)
 |-  _i  =  <. 0R ,  1R >.
 
Definitiondf-r 7623 Define the set of real numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 RR  =  ( R. 
 X.  { 0R } )
 
Definitiondf-add 7624* Define addition over complex numbers. (Contributed by NM, 28-May-1995.)
 |- 
 +  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( w  +R  u ) ,  ( v  +R  f ) >. ) ) }
 
Definitiondf-mul 7625* Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.)
 |- 
 x.  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) ) ,  ( ( v 
 .R  u )  +R  ( w  .R  f ) ) >. ) ) }
 
Definitiondf-lt 7626* Define 'less than' on the real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  = 
 <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
 
Theoremopelcn 7627 Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.)
 |-  ( <. A ,  B >.  e.  CC  <->  ( A  e.  R. 
 /\  B  e.  R. ) )
 
Theoremopelreal 7628 Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |-  ( <. A ,  0R >.  e.  RR  <->  A  e.  R. )
 
Theoremelreal 7629* Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.)
 |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
 
Theoremelrealeu 7630* The real number mapping in elreal 7629 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.)
 |-  ( A  e.  RR  <->  E! x  e.  R.  <. x ,  0R >.  =  A )
 
Theoremelreal2 7631 Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.)
 |-  ( A  e.  RR  <->  (
 ( 1st `  A )  e.  R.  /\  A  =  <. ( 1st `  A ) ,  0R >. ) )
 
Theorem0ncn 7632 The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7633 which is a related property. (Contributed by NM, 2-May-1996.)
 |- 
 -.  (/)  e.  CC
 
Theoremcnm 7633* A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  x  e.  A )
 
Theoremltrelre 7634 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 <RR  C_  ( RR  X.  RR )
 
Theoremaddcnsr 7635 Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  +  <. C ,  D >. )  =  <. ( A  +R  C ) ,  ( B  +R  D ) >. )
 
Theoremmulcnsr 7636 Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  (
 ( B  .R  C )  +R  ( A  .R  D ) ) >. )
 
Theoremeqresr 7637 Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  A  e.  _V   =>    |-  ( <. A ,  0R >.  =  <. B ,  0R >. 
 <->  A  =  B )
 
Theoremaddresr 7638 Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  +  <. B ,  0R >. )  =  <. ( A  +R  B ) ,  0R >. )
 
Theoremmulresr 7639 Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )
 
Theoremltresr 7640 Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
 |-  ( <. A ,  0R >.  <RR 
 <. B ,  0R >.  <->  A  <R  B )
 
Theoremltresr2 7641 Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <-> 
 ( 1st `  A )  <R  ( 1st `  B ) ) )
 
Theoremdfcnqs 7642 Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in  CC from those in  R.. The trick involves qsid 6487, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that  CC is a quotient set, even though it is not (compare df-c 7619), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.)
 |- 
 CC  =  ( ( R.  X.  R. ) /. `'  _E  )
 
Theoremaddcnsrec 7643 Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 7642 and mulcnsrec 7644. (Contributed by NM, 13-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( [ <. A ,  B >. ] `'  _E  +  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( A  +R  C ) ,  ( B  +R  D ) >. ] `'  _E  )
 
Theoremmulcnsrec 7644 Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6486, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7642. (Contributed by NM, 13-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( [ <. A ,  B >. ] `'  _E  x.  [
 <. C ,  D >. ] `'  _E  )  =  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B 
 .R  C )  +R  ( A  .R  D ) ) >. ] `'  _E  )
 
Theoremaddvalex 7645 Existence of a sum. This is dependent on how we define  + so once we proceed to real number axioms we will replace it with theorems such as addcl 7738. (Contributed by Jim Kingdon, 14-Jul-2021.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +  B )  e.  _V )
 
Theorempitonnlem1 7646* Lemma for pitonn 7649. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
 |- 
 <. [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
 
Theorempitonnlem1p1 7647 Lemma for pitonn 7649. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.)
 |-  ( A  e.  P.  ->  [ <. ( A  +P.  ( 1P  +P.  1P )
 ) ,  ( 1P 
 +P.  1P ) >. ]  ~R  =  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  )
 
Theorempitonnlem2 7648* Lemma for pitonn 7649. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
 |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l  <Q  [
 <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ] 
 ~Q  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theorempitonn 7649* Mapping from  N. to  NN. (Contributed by Jim Kingdon, 22-Apr-2020.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) } )
 
Theorempitoregt0 7650* Embedding from  N. to  RR yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  ->  0  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theorempitore 7651* Embedding from  N. to  RR. Similar to pitonn 7649 but separate in the sense that we have not proved nnssre 8717 yet. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  RR )
 
Theoremrecnnre 7652* Embedding the reciprocal of a natural number into  RR. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  RR )
 
Theorempeano1nnnn 7653* One is an element of  NN. This is a counterpart to 1nn 8724 designed for real number axioms which involve natural numbers (notably, axcaucvg 7701). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  1  e.  N
 
Theorempeano2nnnn 7654* A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 8725 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7701). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( A  e.  N  ->  ( A  +  1 )  e.  N )
 
Theoremltrennb 7655* Ordering of natural numbers with 
<N or  <RR. (Contributed by Jim Kingdon, 13-Jul-2021.)
 |-  ( ( J  e.  N. 
 /\  K  e.  N. )  ->  ( J  <N  K  <->  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
 
Theoremltrenn 7656* Ordering of natural numbers with 
<N or  <RR. (Contributed by Jim Kingdon, 12-Jul-2021.)
 |-  ( J  <N  K  ->  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theoremrecidpipr 7657* Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
 |-  ( N  e.  N.  ->  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ] 
 ~Q  <Q  u } >.  .P.  <. { l  |  l 
 <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
 
Theoremrecidpirqlemcalc 7658 Lemma for recidpirq 7659. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  ( A  .P.  B )  =  1P )   =>    |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) ) 
 +P.  1P )  =  ( ( ( ( A 
 +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P )
 ) )  +P.  ( 1P  +P.  1P ) ) )
 
Theoremrecidpirq 7659* A real number times its reciprocal is one, where reciprocal is expressed with  *Q. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
 <. { l  |  l 
 <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ,  0R >. )  =  1 )
 
4.1.2  Final derivation of real and complex number postulates
 
Theoremaxcnex 7660 The complex numbers form a set. Use cnex 7737 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
 |- 
 CC  e.  _V
 
Theoremaxresscn 7661 The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 7705. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
 |- 
 RR  C_  CC
 
Theoremax1cn 7662 1 is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 7706. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.)
 |-  1  e.  CC
 
Theoremax1re 7663 1 is a real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1re 7707.

In the Metamath Proof Explorer, this is not a complex number axiom but is proved from ax-1cn 7706 and the other axioms. It is not known whether we can do so here, but the Metamath Proof Explorer proof (accessed 13-Jan-2020) uses excluded middle. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)

 |-  1  e.  RR
 
Theoremaxicn 7664  _i is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 7708. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.)
 |-  _i  e.  CC
 
Theoremaxaddcl 7665 Closure law for addition of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 7709 be used later. Instead, in most cases use addcl 7738. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
 
Theoremaxaddrcl 7666 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 7710 be used later. Instead, in most cases use readdcl 7739. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
 
Theoremaxmulcl 7667 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 7711 be used later. Instead, in most cases use mulcl 7740. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
 
Theoremaxmulrcl 7668 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 7712 be used later. Instead, in most cases use remulcl 7741. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
 
Theoremaxaddf 7669 Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 7665. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 7735. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
 |- 
 +  : ( CC 
 X.  CC ) --> CC
 
Theoremaxmulf 7670 Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl 7667. This construction-dependent theorem should not be referenced directly; instead, use ax-mulf 7736. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
 |- 
 x.  : ( CC 
 X.  CC ) --> CC
 
Theoremaxaddcom 7671 Addition commutes. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcom 7713 be used later. Instead, use addcom 7892.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A )
 )
 
Theoremaxmulcom 7672 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7714 be used later. Instead, use mulcom 7742. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
 
Theoremaxaddass 7673 Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 7715 be used later. Instead, use addass 7743. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) ) )
 
Theoremaxmulass 7674 Multiplication of complex numbers is associative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 7716. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) ) )
 
Theoremaxdistr 7675 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 7717 be used later. Instead, use adddi 7745. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C )
 )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
 
Theoremaxi2m1 7676 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 7718. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
 |-  ( ( _i  x.  _i )  +  1
 )  =  0
 
Theoremax0lt1 7677 0 is less than 1. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0lt1 7719.

The version of this axiom in the Metamath Proof Explorer reads  1  =/=  0; here we change it to  0  <RR  1. The proof of  0  <RR  1 from  1  =/=  0 in the Metamath Proof Explorer (accessed 12-Jan-2020) relies on real number trichotomy. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)

 |-  0  <RR  1
 
Theoremax1rid 7678  1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 7720. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  ( A  x.  1
 )  =  A )
 
Theoremax0id 7679  0 is an identity element for real addition. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0id 7721.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.)

 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
 
Theoremaxrnegex 7680* Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 7722. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
 
Theoremaxprecex 7681* Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 7723.

In treatments which assume excluded middle, the  0 
<RR  A condition is generally replaced by  A  =/=  0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  0  <RR  A ) 
 ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 )
 )
 
Theoremaxcnre 7682* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7724. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
 
Theoremaxpre-ltirr 7683 Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 7725. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  -.  A  <RR  A )
 
Theoremaxpre-ltwlin 7684 Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 7726. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
 
Theoremaxpre-lttrn 7685 Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 7727. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <RR  B 
 /\  B  <RR  C ) 
 ->  A  <RR  C ) )
 
Theoremaxpre-apti 7686 Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-apti 7728.

(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  B  e.  RR  /\ 
 -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
 
Theoremaxpre-ltadd 7687 Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 7729. (Contributed by NM, 11-May-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A ) 
 <RR  ( C  +  B ) ) )
 
Theoremaxpre-mulgt0 7688 The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 7730. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0 
 <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
 
Theoremaxpre-mulext 7689 Strong extensionality of multiplication (expressed in terms of  <RR). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulext 7731.

(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  x.  C )  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
 
Theoremrereceu 7690* The reciprocal from axprecex 7681 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( ( A  e.  RR  /\  0  <RR  A ) 
 ->  E! x  e.  RR  ( A  x.  x )  =  1 )
 
Theoremrecriota 7691* Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.)
 |-  ( N  e.  N.  ->  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 )  = 
 <. [ <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theoremaxarch 7692* Archimedean axiom. The Archimedean property is more naturally stated once we have defined  NN. Unless we find another way to state it, we'll just use the right hand side of dfnn2 8715 in stating what we mean by "natural number" in the context of this axiom.

This construction-dependent theorem should not be referenced directly; instead, use ax-arch 7732. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.)

 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
 y  +  1 )  e.  x ) } A  <RR  n )
 
Theorempeano5nnnn 7693* Peano's inductive postulate. This is a counterpart to peano5nni 8716 designed for real number axioms which involve natural numbers (notably, axcaucvg 7701). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( ( 1  e.  A  /\  A. z  e.  A  ( z  +  1 )  e.  A )  ->  N  C_  A )
 
Theoremnnindnn 7694* Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8729 designed for real number axioms which involve natural numbers (notably, axcaucvg 7701). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( z  =  1  ->  ( ph  <->  ps ) )   &    |-  ( z  =  k  ->  ( ph  <->  ch ) )   &    |-  ( z  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( z  =  A  ->  ( ph  <->  ta ) )   &    |-  ps   &    |-  ( k  e.  N  ->  ( ch  ->  th ) )   =>    |-  ( A  e.  N  ->  ta )
 
Theoremnntopi 7695* Mapping from  NN to  N.. (Contributed by Jim Kingdon, 13-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( A  e.  N  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A )
 
Theoremaxcaucvglemcl 7696* Lemma for axcaucvg 7701. Mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   =>    |-  (
 ( ph  /\  J  e.  N. )  ->  ( iota_ z  e. 
 R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  e. 
 R. )
 
Theoremaxcaucvglemf 7697* Lemma for axcaucvg 7701. Mapping to  N. and  R. yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  G : N.
 --> R. )
 
Theoremaxcaucvglemval 7698* Lemma for axcaucvg 7701. Value of sequence when mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ( ph  /\  J  e.  N. )  ->  ( F `  <. [ <. ( <. { l  |  l  <Q  [
 <. J ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
 
Theoremaxcaucvglemcau 7699* Lemma for axcaucvg 7701. The result of mapping to  N. and  R. satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  A. n  e. 
 N.  A. k  e.  N.  ( n  <N  k  ->  ( ( G `  n )  <R  ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )
 
Theoremaxcaucvglemres 7700* Lemma for axcaucvg 7701. Mapping the limit from  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e. 
 RR  ( 0  <RR  x 
 ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  (
 ( F `  k
 )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k
 )  +  x ) ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >