HomeHome Intuitionistic Logic Explorer
Theorem List (p. 77 of 131)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7601-7700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelrealeu 7601* The real number mapping in elreal 7600 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.)
 |-  ( A  e.  RR  <->  E! x  e.  R.  <. x ,  0R >.  =  A )
 
Theoremelreal2 7602 Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.)
 |-  ( A  e.  RR  <->  (
 ( 1st `  A )  e.  R.  /\  A  =  <. ( 1st `  A ) ,  0R >. ) )
 
Theorem0ncn 7603 The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7604 which is a related property. (Contributed by NM, 2-May-1996.)
 |- 
 -.  (/)  e.  CC
 
Theoremcnm 7604* A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  x  e.  A )
 
Theoremltrelre 7605 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 <RR  C_  ( RR  X.  RR )
 
Theoremaddcnsr 7606 Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  +  <. C ,  D >. )  =  <. ( A  +R  C ) ,  ( B  +R  D ) >. )
 
Theoremmulcnsr 7607 Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  (
 ( B  .R  C )  +R  ( A  .R  D ) ) >. )
 
Theoremeqresr 7608 Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  A  e.  _V   =>    |-  ( <. A ,  0R >.  =  <. B ,  0R >. 
 <->  A  =  B )
 
Theoremaddresr 7609 Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  +  <. B ,  0R >. )  =  <. ( A  +R  B ) ,  0R >. )
 
Theoremmulresr 7610 Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )
 
Theoremltresr 7611 Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
 |-  ( <. A ,  0R >.  <RR 
 <. B ,  0R >.  <->  A  <R  B )
 
Theoremltresr2 7612 Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <-> 
 ( 1st `  A )  <R  ( 1st `  B ) ) )
 
Theoremdfcnqs 7613 Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in  CC from those in  R.. The trick involves qsid 6460, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that  CC is a quotient set, even though it is not (compare df-c 7590), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.)
 |- 
 CC  =  ( ( R.  X.  R. ) /. `'  _E  )
 
Theoremaddcnsrec 7614 Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 7613 and mulcnsrec 7615. (Contributed by NM, 13-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( [ <. A ,  B >. ] `'  _E  +  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( A  +R  C ) ,  ( B  +R  D ) >. ] `'  _E  )
 
Theoremmulcnsrec 7615 Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6459, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7613. (Contributed by NM, 13-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( [ <. A ,  B >. ] `'  _E  x.  [
 <. C ,  D >. ] `'  _E  )  =  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B 
 .R  C )  +R  ( A  .R  D ) ) >. ] `'  _E  )
 
Theoremaddvalex 7616 Existence of a sum. This is dependent on how we define  + so once we proceed to real number axioms we will replace it with theorems such as addcl 7709. (Contributed by Jim Kingdon, 14-Jul-2021.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +  B )  e.  _V )
 
Theorempitonnlem1 7617* Lemma for pitonn 7620. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
 |- 
 <. [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
 
Theorempitonnlem1p1 7618 Lemma for pitonn 7620. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.)
 |-  ( A  e.  P.  ->  [ <. ( A  +P.  ( 1P  +P.  1P )
 ) ,  ( 1P 
 +P.  1P ) >. ]  ~R  =  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  )
 
Theorempitonnlem2 7619* Lemma for pitonn 7620. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
 |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l  <Q  [
 <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ] 
 ~Q  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theorempitonn 7620* Mapping from  N. to  NN. (Contributed by Jim Kingdon, 22-Apr-2020.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) } )
 
Theorempitoregt0 7621* Embedding from  N. to  RR yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  ->  0  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theorempitore 7622* Embedding from  N. to  RR. Similar to pitonn 7620 but separate in the sense that we have not proved nnssre 8684 yet. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  RR )
 
Theoremrecnnre 7623* Embedding the reciprocal of a natural number into  RR. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  RR )
 
Theorempeano1nnnn 7624* One is an element of  NN. This is a counterpart to 1nn 8691 designed for real number axioms which involve natural numbers (notably, axcaucvg 7672). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  1  e.  N
 
Theorempeano2nnnn 7625* A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 8692 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7672). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( A  e.  N  ->  ( A  +  1 )  e.  N )
 
Theoremltrennb 7626* Ordering of natural numbers with 
<N or  <RR. (Contributed by Jim Kingdon, 13-Jul-2021.)
 |-  ( ( J  e.  N. 
 /\  K  e.  N. )  ->  ( J  <N  K  <->  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
 
Theoremltrenn 7627* Ordering of natural numbers with 
<N or  <RR. (Contributed by Jim Kingdon, 12-Jul-2021.)
 |-  ( J  <N  K  ->  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theoremrecidpipr 7628* Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
 |-  ( N  e.  N.  ->  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ] 
 ~Q  <Q  u } >.  .P.  <. { l  |  l 
 <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
 
Theoremrecidpirqlemcalc 7629 Lemma for recidpirq 7630. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  ( A  .P.  B )  =  1P )   =>    |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) ) 
 +P.  1P )  =  ( ( ( ( A 
 +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P )
 ) )  +P.  ( 1P  +P.  1P ) ) )
 
Theoremrecidpirq 7630* A real number times its reciprocal is one, where reciprocal is expressed with  *Q. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
 <. { l  |  l 
 <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ,  0R >. )  =  1 )
 
4.1.2  Final derivation of real and complex number postulates
 
Theoremaxcnex 7631 The complex numbers form a set. Use cnex 7708 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
 |- 
 CC  e.  _V
 
Theoremaxresscn 7632 The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 7676. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
 |- 
 RR  C_  CC
 
Theoremax1cn 7633 1 is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 7677. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.)
 |-  1  e.  CC
 
Theoremax1re 7634 1 is a real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1re 7678.

In the Metamath Proof Explorer, this is not a complex number axiom but is proved from ax-1cn 7677 and the other axioms. It is not known whether we can do so here, but the Metamath Proof Explorer proof (accessed 13-Jan-2020) uses excluded middle. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)

 |-  1  e.  RR
 
Theoremaxicn 7635  _i is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 7679. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.)
 |-  _i  e.  CC
 
Theoremaxaddcl 7636 Closure law for addition of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 7680 be used later. Instead, in most cases use addcl 7709. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
 
Theoremaxaddrcl 7637 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 7681 be used later. Instead, in most cases use readdcl 7710. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
 
Theoremaxmulcl 7638 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 7682 be used later. Instead, in most cases use mulcl 7711. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
 
Theoremaxmulrcl 7639 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 7683 be used later. Instead, in most cases use remulcl 7712. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
 
Theoremaxaddf 7640 Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 7636. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 7706. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
 |- 
 +  : ( CC 
 X.  CC ) --> CC
 
Theoremaxmulf 7641 Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl 7638. This construction-dependent theorem should not be referenced directly; instead, use ax-mulf 7707. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
 |- 
 x.  : ( CC 
 X.  CC ) --> CC
 
Theoremaxaddcom 7642 Addition commutes. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcom 7684 be used later. Instead, use addcom 7863.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A )
 )
 
Theoremaxmulcom 7643 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7685 be used later. Instead, use mulcom 7713. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
 
Theoremaxaddass 7644 Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 7686 be used later. Instead, use addass 7714. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) ) )
 
Theoremaxmulass 7645 Multiplication of complex numbers is associative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 7687. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) ) )
 
Theoremaxdistr 7646 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 7688 be used later. Instead, use adddi 7716. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C )
 )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
 
Theoremaxi2m1 7647 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 7689. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
 |-  ( ( _i  x.  _i )  +  1
 )  =  0
 
Theoremax0lt1 7648 0 is less than 1. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0lt1 7690.

The version of this axiom in the Metamath Proof Explorer reads  1  =/=  0; here we change it to  0  <RR  1. The proof of  0  <RR  1 from  1  =/=  0 in the Metamath Proof Explorer (accessed 12-Jan-2020) relies on real number trichotomy. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)

 |-  0  <RR  1
 
Theoremax1rid 7649  1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 7691. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  ( A  x.  1
 )  =  A )
 
Theoremax0id 7650  0 is an identity element for real addition. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0id 7692.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.)

 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
 
Theoremaxrnegex 7651* Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 7693. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
 
Theoremaxprecex 7652* Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 7694.

In treatments which assume excluded middle, the  0 
<RR  A condition is generally replaced by  A  =/=  0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  0  <RR  A ) 
 ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 )
 )
 
Theoremaxcnre 7653* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7695. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
 
Theoremaxpre-ltirr 7654 Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 7696. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  -.  A  <RR  A )
 
Theoremaxpre-ltwlin 7655 Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 7697. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
 
Theoremaxpre-lttrn 7656 Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 7698. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <RR  B 
 /\  B  <RR  C ) 
 ->  A  <RR  C ) )
 
Theoremaxpre-apti 7657 Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-apti 7699.

(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  B  e.  RR  /\ 
 -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
 
Theoremaxpre-ltadd 7658 Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 7700. (Contributed by NM, 11-May-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A ) 
 <RR  ( C  +  B ) ) )
 
Theoremaxpre-mulgt0 7659 The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 7701. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0 
 <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
 
Theoremaxpre-mulext 7660 Strong extensionality of multiplication (expressed in terms of  <RR). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulext 7702.

(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  x.  C )  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
 
Theoremrereceu 7661* The reciprocal from axprecex 7652 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( ( A  e.  RR  /\  0  <RR  A ) 
 ->  E! x  e.  RR  ( A  x.  x )  =  1 )
 
Theoremrecriota 7662* Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.)
 |-  ( N  e.  N.  ->  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 )  = 
 <. [ <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theoremaxarch 7663* Archimedean axiom. The Archimedean property is more naturally stated once we have defined  NN. Unless we find another way to state it, we'll just use the right hand side of dfnn2 8682 in stating what we mean by "natural number" in the context of this axiom.

This construction-dependent theorem should not be referenced directly; instead, use ax-arch 7703. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.)

 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
 y  +  1 )  e.  x ) } A  <RR  n )
 
Theorempeano5nnnn 7664* Peano's inductive postulate. This is a counterpart to peano5nni 8683 designed for real number axioms which involve natural numbers (notably, axcaucvg 7672). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( ( 1  e.  A  /\  A. z  e.  A  ( z  +  1 )  e.  A )  ->  N  C_  A )
 
Theoremnnindnn 7665* Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8696 designed for real number axioms which involve natural numbers (notably, axcaucvg 7672). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( z  =  1  ->  ( ph  <->  ps ) )   &    |-  ( z  =  k  ->  ( ph  <->  ch ) )   &    |-  ( z  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( z  =  A  ->  ( ph  <->  ta ) )   &    |-  ps   &    |-  ( k  e.  N  ->  ( ch  ->  th ) )   =>    |-  ( A  e.  N  ->  ta )
 
Theoremnntopi 7666* Mapping from  NN to  N.. (Contributed by Jim Kingdon, 13-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( A  e.  N  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A )
 
Theoremaxcaucvglemcl 7667* Lemma for axcaucvg 7672. Mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   =>    |-  (
 ( ph  /\  J  e.  N. )  ->  ( iota_ z  e. 
 R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  e. 
 R. )
 
Theoremaxcaucvglemf 7668* Lemma for axcaucvg 7672. Mapping to  N. and  R. yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  G : N.
 --> R. )
 
Theoremaxcaucvglemval 7669* Lemma for axcaucvg 7672. Value of sequence when mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ( ph  /\  J  e.  N. )  ->  ( F `  <. [ <. ( <. { l  |  l  <Q  [
 <. J ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
 
Theoremaxcaucvglemcau 7670* Lemma for axcaucvg 7672. The result of mapping to  N. and  R. satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  A. n  e. 
 N.  A. k  e.  N.  ( n  <N  k  ->  ( ( G `  n )  <R  ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )
 
Theoremaxcaucvglemres 7671* Lemma for axcaucvg 7672. Mapping the limit from  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e. 
 RR  ( 0  <RR  x 
 ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  (
 ( F `  k
 )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k
 )  +  x ) ) ) ) )
 
Theoremaxcaucvg 7672* Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 
1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

Because we are stating this axiom before we have introduced notations for  NN or division, we use  N for the natural numbers and express a reciprocal in terms of  iota_.

This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7704. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)

 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e. 
 RR  ( 0  <RR  x 
 ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  (
 ( F `  k
 )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k
 )  +  x ) ) ) ) )
 
Theoremaxpre-suploclemres 7673* Lemma for axpre-suploc 7674. The result. The proof just needs to define  B as basically the same set as  A (but expressed as a subset of  R. rather than a subset of  RR), and apply suplocsr 7581. (Contributed by Jim Kingdon, 24-Jan-2024.)
 |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y 
 <RR  x )   &    |-  ( ph  ->  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )   &    |-  B  =  { w  e.  R.  |  <. w ,  0R >.  e.  A }   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
 y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
Theoremaxpre-suploc 7674* An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7705. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y 
 ->  ( E. z  e.  A  x  <RR  z  \/ 
 A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y 
 /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
4.1.3  Real and complex number postulates restated as axioms
 
Axiomax-cnex 7675 The complex numbers form a set. Proofs should normally use cnex 7708 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.)
 |- 
 CC  e.  _V
 
Axiomax-resscn 7676 The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by theorem axresscn 7632. (Contributed by NM, 1-Mar-1995.)
 |- 
 RR  C_  CC
 
Axiomax-1cn 7677 1 is a complex number. Axiom for real and complex numbers, justified by theorem ax1cn 7633. (Contributed by NM, 1-Mar-1995.)
 |-  1  e.  CC
 
Axiomax-1re 7678 1 is a real number. Axiom for real and complex numbers, justified by theorem ax1re 7634. Proofs should use 1re 7729 instead. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)
 |-  1  e.  RR
 
Axiomax-icn 7679  _i is a complex number. Axiom for real and complex numbers, justified by theorem axicn 7635. (Contributed by NM, 1-Mar-1995.)
 |-  _i  e.  CC
 
Axiomax-addcl 7680 Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by theorem axaddcl 7636. Proofs should normally use addcl 7709 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
 
Axiomax-addrcl 7681 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by theorem axaddrcl 7637. Proofs should normally use readdcl 7710 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
 
Axiomax-mulcl 7682 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by theorem axmulcl 7638. Proofs should normally use mulcl 7711 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
 
Axiomax-mulrcl 7683 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by theorem axmulrcl 7639. Proofs should normally use remulcl 7712 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
 
Axiomax-addcom 7684 Addition commutes. Axiom for real and complex numbers, justified by theorem axaddcom 7642. Proofs should normally use addcom 7863 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A )
 )
 
Axiomax-mulcom 7685 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by theorem axmulcom 7643. Proofs should normally use mulcom 7713 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
 
Axiomax-addass 7686 Addition of complex numbers is associative. Axiom for real and complex numbers, justified by theorem axaddass 7644. Proofs should normally use addass 7714 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) ) )
 
Axiomax-mulass 7687 Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by theorem axmulass 7645. Proofs should normally use mulass 7715 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) ) )
 
Axiomax-distr 7688 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by theorem axdistr 7646. Proofs should normally use adddi 7716 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C )
 )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
 
Axiomax-i2m1 7689 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by theorem axi2m1 7647. (Contributed by NM, 29-Jan-1995.)
 |-  ( ( _i  x.  _i )  +  1
 )  =  0
 
Axiomax-0lt1 7690 0 is less than 1. Axiom for real and complex numbers, justified by theorem ax0lt1 7648. Proofs should normally use 0lt1 7853 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.)
 |-  0  <RR  1
 
Axiomax-1rid 7691  1 is an identity element for real multiplication. Axiom for real and complex numbers, justified by theorem ax1rid 7649. (Contributed by NM, 29-Jan-1995.)
 |-  ( A  e.  RR  ->  ( A  x.  1
 )  =  A )
 
Axiomax-0id 7692  0 is an identity element for real addition. Axiom for real and complex numbers, justified by theorem ax0id 7650.

Proofs should normally use addid1 7864 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.)

 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
 
Axiomax-rnegex 7693* Existence of negative of real number. Axiom for real and complex numbers, justified by theorem axrnegex 7651. (Contributed by Eric Schmidt, 21-May-2007.)
 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
 
Axiomax-precex 7694* Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by theorem axprecex 7652. (Contributed by Jim Kingdon, 6-Feb-2020.)
 |-  ( ( A  e.  RR  /\  0  <RR  A ) 
 ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 )
 )
 
Axiomax-cnre 7695* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by theorem axcnre 7653. For naming consistency, use cnre 7726 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.)
 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
 
Axiomax-pre-ltirr 7696 Real number less-than is irreflexive. Axiom for real and complex numbers, justified by theorem ax-pre-ltirr 7696. (Contributed by Jim Kingdon, 12-Jan-2020.)
 |-  ( A  e.  RR  ->  -.  A  <RR  A )
 
Axiomax-pre-ltwlin 7697 Real number less-than is weakly linear. Axiom for real and complex numbers, justified by theorem axpre-ltwlin 7655. (Contributed by Jim Kingdon, 12-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
 
Axiomax-pre-lttrn 7698 Ordering on reals is transitive. Axiom for real and complex numbers, justified by theorem axpre-lttrn 7656. (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <RR  B 
 /\  B  <RR  C ) 
 ->  A  <RR  C ) )
 
Axiomax-pre-apti 7699 Apartness of reals is tight. Axiom for real and complex numbers, justified by theorem axpre-apti 7657. (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\ 
 -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
 
Axiomax-pre-ltadd 7700 Ordering property of addition on reals. Axiom for real and complex numbers, justified by theorem axpre-ltadd 7658. (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A ) 
 <RR  ( C  +  B ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13088
  Copyright terms: Public domain < Previous  Next >