HomeHome Intuitionistic Logic Explorer
Theorem List (p. 134 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13301-13400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcosz12 13301 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( cos `  p )  =  0
 
Theoremsin0pilem1 13302* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
 
Theoremsin0pilem2 13303* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. q  e.  (
 2 (,) 4 ) ( ( sin `  q
 )  =  0  /\  A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )
 
Theorempilem3 13304 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
 |-  ( pi  e.  (
 2 (,) 4 )  /\  ( sin `  pi )  =  0 )
 
Theorempigt2lt4 13305  pi is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
 |-  ( 2  <  pi  /\  pi  <  4 )
 
Theoremsinpi 13306 The sine of  pi is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( sin `  pi )  =  0
 
Theorempire 13307  pi is a real number. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  pi  e.  RR
 
Theorempicn 13308  pi is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  pi  e.  CC
 
Theorempipos 13309  pi is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
 |-  0  <  pi
 
Theorempirp 13310  pi is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  pi  e.  RR+
 
Theoremnegpicn 13311  -u pi is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u pi  e.  CC
 
Theoremsinhalfpilem 13312 Lemma for sinhalfpi 13317 and coshalfpi 13318. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( ( sin `  ( pi  /  2 ) )  =  1  /\  ( cos `  ( pi  / 
 2 ) )  =  0 )
 
Theoremhalfpire 13313  pi  /  2 is real. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( pi  /  2
 )  e.  RR
 
Theoremneghalfpire 13314  -u pi  / 
2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u ( pi  /  2
 )  e.  RR
 
Theoremneghalfpirx 13315  -u pi  / 
2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u ( pi  /  2
 )  e.  RR*
 
Theorempidiv2halves 13316 Adding  pi  /  2 to itself gives  pi. See 2halves 9082. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( ( pi  / 
 2 )  +  ( pi  /  2 ) )  =  pi
 
Theoremsinhalfpi 13317 The sine of  pi  /  2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( sin `  ( pi  /  2 ) )  =  1
 
Theoremcoshalfpi 13318 The cosine of  pi  /  2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( cos `  ( pi  /  2 ) )  =  0
 
Theoremcosneghalfpi 13319 The cosine of  -u pi  /  2 is zero. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( cos `  -u ( pi  /  2 ) )  =  0
 
Theoremefhalfpi 13320 The exponential of  _i pi  /  2 is  _i. (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( exp `  ( _i  x.  ( pi  / 
 2 ) ) )  =  _i
 
Theoremcospi 13321 The cosine of  pi is  -u 1. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( cos `  pi )  =  -u 1
 
Theoremefipi 13322 The exponential of  _i  x.  pi is  -u 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( exp `  ( _i  x.  pi ) )  =  -u 1
 
Theoremeulerid 13323 Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
 |-  ( ( exp `  ( _i  x.  pi ) )  +  1 )  =  0
 
Theoremsin2pi 13324 The sine of  2 pi is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( sin `  (
 2  x.  pi ) )  =  0
 
Theoremcos2pi 13325 The cosine of  2 pi is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( cos `  (
 2  x.  pi ) )  =  1
 
Theoremef2pi 13326 The exponential of  2 pi _i is  1. (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( exp `  ( _i  x.  ( 2  x.  pi ) ) )  =  1
 
Theoremef2kpi 13327 If  K is an integer, then the exponential of  2 K pi _i is  1. (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( K  e.  ZZ  ->  ( exp `  (
 ( _i  x.  (
 2  x.  pi ) )  x.  K ) )  =  1 )
 
Theoremefper 13328 The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.)
 |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  ( A  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) ) )  =  ( exp `  A ) )
 
Theoremsinperlem 13329 Lemma for sinper 13330 and cosper 13331. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( A  e.  CC  ->  ( F `  A )  =  ( (
 ( exp `  ( _i  x.  A ) ) O ( exp `  ( -u _i  x.  A ) ) )  /  D ) )   &    |-  ( ( A  +  ( K  x.  ( 2  x.  pi ) ) )  e. 
 CC  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  ( K  x.  (
 2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  /  D ) )   =>    |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( F `
  A ) )
 
Theoremsinper 13330 The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A ) )
 
Theoremcosper 13331 The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( cos `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( cos `  A ) )
 
Theoremsin2kpi 13332 If  K is an integer, then the sine of  2 K pi is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( K  e.  ZZ  ->  ( sin `  ( K  x.  ( 2  x.  pi ) ) )  =  0 )
 
Theoremcos2kpi 13333 If  K is an integer, then the cosine of  2 K pi is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( K  e.  ZZ  ->  ( cos `  ( K  x.  ( 2  x.  pi ) ) )  =  1 )
 
Theoremsin2pim 13334 Sine of a number subtracted from  2  x.  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( sin `  (
 ( 2  x.  pi )  -  A ) )  =  -u ( sin `  A ) )
 
Theoremcos2pim 13335 Cosine of a number subtracted from  2  x.  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( cos `  (
 ( 2  x.  pi )  -  A ) )  =  ( cos `  A ) )
 
Theoremsinmpi 13336 Sine of a number less  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( sin `  ( A  -  pi ) )  =  -u ( sin `  A ) )
 
Theoremcosmpi 13337 Cosine of a number less  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( cos `  ( A  -  pi ) )  =  -u ( cos `  A ) )
 
Theoremsinppi 13338 Sine of a number plus  pi. (Contributed by NM, 10-Aug-2008.)
 |-  ( A  e.  CC  ->  ( sin `  ( A  +  pi )
 )  =  -u ( sin `  A ) )
 
Theoremcosppi 13339 Cosine of a number plus  pi. (Contributed by NM, 18-Aug-2008.)
 |-  ( A  e.  CC  ->  ( cos `  ( A  +  pi )
 )  =  -u ( cos `  A ) )
 
Theoremefimpi 13340 The exponential function at  _i times a real number less 
pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( A  -  pi ) ) )  =  -u ( exp `  ( _i  x.  A ) ) )
 
Theoremsinhalfpip 13341 The sine of  pi  /  2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  CC  ->  ( sin `  (
 ( pi  /  2
 )  +  A ) )  =  ( cos `  A ) )
 
Theoremsinhalfpim 13342 The sine of  pi  /  2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  CC  ->  ( sin `  (
 ( pi  /  2
 )  -  A ) )  =  ( cos `  A ) )
 
Theoremcoshalfpip 13343 The cosine of  pi  /  2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  CC  ->  ( cos `  (
 ( pi  /  2
 )  +  A ) )  =  -u ( sin `  A ) )
 
Theoremcoshalfpim 13344 The cosine of  pi  /  2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  CC  ->  ( cos `  (
 ( pi  /  2
 )  -  A ) )  =  ( sin `  A ) )
 
Theoremptolemy 13345 Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 11681, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
 ( A  +  B )  +  ( C  +  D ) )  =  pi )  ->  (
 ( ( sin `  A )  x.  ( sin `  B ) )  +  (
 ( sin `  C )  x.  ( sin `  D ) ) )  =  ( ( sin `  ( B  +  C )
 )  x.  ( sin `  ( A  +  C ) ) ) )
 
Theoremsincosq1lem 13346 Lemma for sincosq1sgn 13347. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  ( pi 
 /  2 ) ) 
 ->  0  <  ( sin `  A ) )
 
Theoremsincosq1sgn 13347 The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  (
 0 (,) ( pi  / 
 2 ) )  ->  ( 0  <  ( sin `  A )  /\  0  <  ( cos `  A ) ) )
 
Theoremsincosq2sgn 13348 The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  (
 ( pi  /  2
 ) (,) pi )  ->  ( 0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )
 
Theoremsincosq3sgn 13349 The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  ( pi (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( ( sin `  A )  <  0  /\  ( cos `  A )  < 
 0 ) )
 
Theoremsincosq4sgn 13350 The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  (
 ( 3  x.  ( pi  /  2 ) ) (,) ( 2  x.  pi ) )  ->  ( ( sin `  A )  <  0  /\  0  <  ( cos `  A ) ) )
 
Theoremsinq12gt0 13351 The sine of a number strictly between 
0 and  pi is positive. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  (
 0 (,) pi )  -> 
 0  <  ( sin `  A ) )
 
Theoremsinq34lt0t 13352 The sine of a number strictly between  pi and  2  x.  pi is negative. (Contributed by NM, 17-Aug-2008.)
 |-  ( A  e.  ( pi (,) ( 2  x.  pi ) )  ->  ( sin `  A )  <  0 )
 
Theoremcosq14gt0 13353 The cosine of a number strictly between  -u pi  /  2 and  pi  /  2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.)
 |-  ( A  e.  ( -u ( pi  /  2
 ) (,) ( pi  / 
 2 ) )  -> 
 0  <  ( cos `  A ) )
 
Theoremcosq23lt0 13354 The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
 |-  ( A  e.  (
 ( pi  /  2
 ) (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( cos `  A )  <  0 )
 
Theoremcoseq0q4123 13355 Location of the zeroes of cosine in  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) ). (Contributed by Jim Kingdon, 14-Mar-2024.)
 |-  ( A  e.  ( -u ( pi  /  2
 ) (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( ( cos `  A )  =  0  <->  A  =  ( pi  /  2 ) ) )
 
Theoremcoseq00topi 13356 Location of the zeroes of cosine in 
( 0 [,] pi ). (Contributed by David Moews, 28-Feb-2017.)
 |-  ( A  e.  (
 0 [,] pi )  ->  ( ( cos `  A )  =  0  <->  A  =  ( pi  /  2 ) ) )
 
Theoremcoseq0negpitopi 13357 Location of the zeroes of cosine in 
( -u pi (,] pi ). (Contributed by David Moews, 28-Feb-2017.)
 |-  ( A  e.  ( -u pi (,] pi ) 
 ->  ( ( cos `  A )  =  0  <->  A  e.  { ( pi  /  2 ) ,  -u ( pi  /  2
 ) } ) )
 
Theoremtanrpcl 13358 Positive real closure of the tangent function. (Contributed by Mario Carneiro, 29-Jul-2014.)
 |-  ( A  e.  (
 0 (,) ( pi  / 
 2 ) )  ->  ( tan `  A )  e.  RR+ )
 
Theoremtangtx 13359 The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
 |-  ( A  e.  (
 0 (,) ( pi  / 
 2 ) )  ->  A  <  ( tan `  A ) )
 
Theoremsincosq1eq 13360 Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  +  B )  =  1 )  ->  ( sin `  ( A  x.  ( pi  / 
 2 ) ) )  =  ( cos `  ( B  x.  ( pi  / 
 2 ) ) ) )
 
Theoremsincos4thpi 13361 The sine and cosine of  pi  /  4. (Contributed by Paul Chapman, 25-Jan-2008.)
 |-  ( ( sin `  ( pi  /  4 ) )  =  ( 1  /  ( sqr `  2 )
 )  /\  ( cos `  ( pi  /  4
 ) )  =  ( 1  /  ( sqr `  2 ) ) )
 
Theoremtan4thpi 13362 The tangent of  pi  /  4. (Contributed by Mario Carneiro, 5-Apr-2015.)
 |-  ( tan `  ( pi  /  4 ) )  =  1
 
Theoremsincos6thpi 13363 The sine and cosine of  pi  /  6. (Contributed by Paul Chapman, 25-Jan-2008.) (Revised by Wolf Lammen, 24-Sep-2020.)
 |-  ( ( sin `  ( pi  /  6 ) )  =  ( 1  / 
 2 )  /\  ( cos `  ( pi  / 
 6 ) )  =  ( ( sqr `  3
 )  /  2 )
 )
 
Theoremsincos3rdpi 13364 The sine and cosine of  pi  /  3. (Contributed by Mario Carneiro, 21-May-2016.)
 |-  ( ( sin `  ( pi  /  3 ) )  =  ( ( sqr `  3 )  /  2
 )  /\  ( cos `  ( pi  /  3
 ) )  =  ( 1  /  2 ) )
 
Theorempigt3 13365  pi is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.)
 |-  3  <  pi
 
Theorempige3 13366  pi is greater than or equal to 3. (Contributed by Mario Carneiro, 21-May-2016.)
 |-  3  <_  pi
 
Theoremabssinper 13367 The absolute value of sine has period  pi. (Contributed by NM, 17-Aug-2008.)
 |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
 
Theoremsinkpi 13368 The sine of an integer multiple of 
pi is 0. (Contributed by NM, 11-Aug-2008.)
 |-  ( K  e.  ZZ  ->  ( sin `  ( K  x.  pi ) )  =  0 )
 
Theoremcoskpi 13369 The absolute value of the cosine of an integer multiple of  pi is 1. (Contributed by NM, 19-Aug-2008.)
 |-  ( K  e.  ZZ  ->  ( abs `  ( cos `  ( K  x.  pi ) ) )  =  1 )
 
Theoremcosordlem 13370 Cosine is decreasing over the closed interval from  0 to  pi. (Contributed by Mario Carneiro, 10-May-2014.)
 |-  ( ph  ->  A  e.  ( 0 [,] pi ) )   &    |-  ( ph  ->  B  e.  ( 0 [,]
 pi ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( cos `  B )  < 
 ( cos `  A )
 )
 
Theoremcosq34lt1 13371 Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
 |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
 
Theoremcos02pilt1 13372 Cosine is less than one between zero and  2  x.  pi. (Contributed by Jim Kingdon, 19-Mar-2024.)
 |-  ( A  e.  (
 0 (,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
 
Theoremcos0pilt1 13373 Cosine is between minus one and one on the open interval between zero and  pi. (Contributed by Jim Kingdon, 7-May-2024.)
 |-  ( A  e.  (
 0 (,) pi )  ->  ( cos `  A )  e.  ( -u 1 (,) 1
 ) )
 
Theoremcos11 13374 Cosine is one-to-one over the closed interval from  0 to  pi. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.)
 |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  (
 0 [,] pi ) ) 
 ->  ( A  =  B  <->  ( cos `  A )  =  ( cos `  B ) ) )
 
Theoremioocosf1o 13375 The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
 |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,)
 pi ) -1-1-onto-> ( -u 1 (,) 1
 )
 
Theoremnegpitopissre 13376 The interval  ( -u pi (,] pi ) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( -u pi (,] pi )  C_  RR
 
9.1.3  The natural logarithm on complex numbers
 
Syntaxclog 13377 Extend class notation with the natural logarithm function on complex numbers.
 class  log
 
Syntaxccxp 13378 Extend class notation with the complex power function.
 class  ^c
 
Definitiondf-relog 13379 Define the natural logarithm function. Defining the logarithm on complex numbers is similar to square root - there are ways to define it but they tend to make use of excluded middle. Therefore, we merely define logarithms on positive reals. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Jim Kingdon, 14-May-2024.)
 |- 
 log  =  `' ( exp  |`  RR )
 
Definitiondf-rpcxp 13380* Define the power function on complex numbers. Because df-relog 13379 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.)
 |- 
 ^c  =  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  (
 y  x.  ( log `  x ) ) ) )
 
Theoremdfrelog 13381 The natural logarithm function on the positive reals in terms of the real exponential function. (Contributed by Paul Chapman, 21-Apr-2008.)
 |-  ( log  |`  RR+ )  =  `' ( exp  |`  RR )
 
Theoremrelogf1o 13382 The natural logarithm function maps the positive reals one-to-one onto the real numbers. (Contributed by Paul Chapman, 21-Apr-2008.)
 |-  ( log  |`  RR+ ) : RR+
 -1-1-onto-> RR
 
Theoremrelogcl 13383 Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
 
Theoremreeflog 13384 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( A  e.  RR+  ->  ( exp `  ( log `  A ) )  =  A )
 
Theoremrelogef 13385 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( A  e.  RR  ->  ( log `  ( exp `  A ) )  =  A )
 
Theoremrelogeftb 13386 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR )  ->  ( ( log `  A )  =  B  <->  ( exp `  B )  =  A )
 )
 
Theoremlog1 13387 The natural logarithm of  1. One case of Property 1a of [Cohen] p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( log `  1
 )  =  0
 
Theoremloge 13388 The natural logarithm of  _e. One case of Property 1b of [Cohen] p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( log `  _e )  =  1
 
Theoremrelogoprlem 13389 Lemma for relogmul 13390 and relogdiv 13391. Remark of [Cohen] p. 301 ("The proof of Property 3 is quite similar to the proof given for Property 2"). (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( ( log `  A )  e.  CC  /\  ( log `  B )  e.  CC )  ->  ( exp `  (
 ( log `  A ) F ( log `  B ) ) )  =  ( ( exp `  ( log `  A ) ) G ( exp `  ( log `  B ) ) ) )   &    |-  ( ( ( log `  A )  e.  RR  /\  ( log `  B )  e.  RR )  ->  ( ( log `  A ) F ( log `  B )
 )  e.  RR )   =>    |-  (
 ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( log `  ( A G B ) )  =  ( ( log `  A ) F ( log `  B )
 ) )
 
Theoremrelogmul 13390 The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( log `  ( A  x.  B ) )  =  ( ( log `  A )  +  ( log `  B ) ) )
 
Theoremrelogdiv 13391 The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( log `  ( A  /  B ) )  =  ( ( log `  A )  -  ( log `  B ) ) )
 
Theoremreexplog 13392 Exponentiation of a positive real number to an integer power. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  N  e.  ZZ )  ->  ( A ^ N )  =  ( exp `  ( N  x.  ( log `  A ) ) ) )
 
Theoremrelogexp 13393 The natural logarithm of positive 
A raised to an integer power. Property 4 of [Cohen] p. 301-302, restricted to natural logarithms and integer powers  N. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  N  e.  ZZ )  ->  ( log `  ( A ^ N ) )  =  ( N  x.  ( log `  A )
 ) )
 
Theoremrelogiso 13394 The natural logarithm function on positive reals determines an isomorphism from the positive reals onto the reals. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( log  |`  RR+ )  Isom  <  ,  <  ( RR+
 ,  RR )
 
Theoremlogltb 13395 The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  <  B  <->  ( log `  A )  <  ( log `  B ) ) )
 
Theoremlogleb 13396 Natural logarithm preserves  <_. (Contributed by Stefan O'Rear, 19-Sep-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  <_  B  <->  ( log `  A )  <_  ( log `  B ) ) )
 
Theoremlogrpap0b 13397 The logarithm is apart from 0 if and only if its argument is apart from 1. (Contributed by Jim Kingdon, 3-Jul-2024.)
 |-  ( A  e.  RR+  ->  ( A #  1  <->  ( log `  A ) #  0 ) )
 
Theoremlogrpap0 13398 The logarithm is apart from 0 if its argument is apart from 1. (Contributed by Jim Kingdon, 5-Jul-2024.)
 |-  ( ( A  e.  RR+  /\  A #  1 )  ->  ( log `  A ) #  0 )
 
Theoremlogrpap0d 13399 Deduction form of logrpap0 13398. (Contributed by Jim Kingdon, 3-Jul-2024.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A #  1 )   =>    |-  ( ph  ->  ( log `  A ) #  0 )
 
Theoremrplogcl 13400 Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  ( ( A  e.  RR  /\  1  <  A )  ->  ( log `  A )  e.  RR+ )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13920
  Copyright terms: Public domain < Previous  Next >