HomeHome Intuitionistic Logic Explorer
Theorem List (p. 134 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13301-13400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremquseccl0g 13301 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 13303 for arbitrary sets  G. (Revised by AV, 24-Feb-2025.)
 |- 
 .~  =  ( G ~QG  S )   &    |-  H  =  ( G 
 /.s  .~  )   &    |-  C  =  (
 Base `  G )   &    |-  B  =  ( Base `  H )   =>    |-  (
 ( G  e.  V  /\  X  e.  C  /\  S  e.  Z )  ->  [ X ]  .~  e.  B )
 
Theoremqusgrp 13302 If  Y is a normal subgroup of  G, then  H  =  G  /  Y is a group, called the quotient of  G by  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   =>    |-  ( S  e.  (NrmSGrp `  G )  ->  H  e.  Grp )
 
Theoremquseccl 13303 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 9-Mar-2025.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  B  =  ( Base `  H )   =>    |-  (
 ( S  e.  (NrmSGrp `  G )  /\  X  e.  V )  ->  [ X ] ( G ~QG  S )  e.  B )
 
Theoremqusadd 13304 Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .+b  =  ( +g  `  H )   =>    |-  (
 ( S  e.  (NrmSGrp `  G )  /\  X  e.  V  /\  Y  e.  V )  ->  ( [ X ] ( G ~QG  S )  .+b  [ Y ] ( G ~QG  S ) )  =  [
 ( X  .+  Y ) ] ( G ~QG  S )
 )
 
Theoremqus0 13305 Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( S  e.  (NrmSGrp `  G )  ->  [  .0.  ] ( G ~QG  S )  =  ( 0g `  H ) )
 
Theoremqusinv 13306 Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  I  =  ( invg `  G )   &    |-  N  =  ( invg `  H )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  X  e.  V )  ->  ( N `  [ X ] ( G ~QG  S )
 )  =  [ ( I `  X ) ]
 ( G ~QG  S ) )
 
Theoremqussub 13307 Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( -g `  H )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  X  e.  V  /\  Y  e.  V )  ->  ( [ X ]
 ( G ~QG  S ) N [ Y ] ( G ~QG  S )
 )  =  [ ( X  .-  Y ) ]
 ( G ~QG  S ) )
 
Theoremecqusaddd 13308 Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.)
 |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )   &    |-  B  =  ( Base `  R )   &    |-  .~  =  ( R ~QG  I )   &    |-  Q  =  ( R  /.s 
 .~  )   =>    |-  ( ( ph  /\  ( A  e.  B  /\  C  e.  B )
 )  ->  [ ( A ( +g  `  R ) C ) ]  .~  =  ( [ A ]  .~  ( +g  `  Q ) [ C ]  .~  ) )
 
Theoremecqusaddcl 13309 Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025.)
 |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )   &    |-  B  =  ( Base `  R )   &    |-  .~  =  ( R ~QG  I )   &    |-  Q  =  ( R  /.s 
 .~  )   =>    |-  ( ( ph  /\  ( A  e.  B  /\  C  e.  B )
 )  ->  ( [ A ]  .~  ( +g  `  Q ) [ C ]  .~  )  e.  ( Base `  Q ) )
 
7.2.4  Elementary theory of group homomorphisms
 
Syntaxcghm 13310 Extend class notation with the generator of group hom-sets.
 class  GrpHom
 
Definitiondf-ghm 13311* A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  GrpHom  =  ( s  e. 
 Grp ,  t  e.  Grp  |->  { g  |  [. ( Base `  s )  /  w ]. ( g : w --> ( Base `  t )  /\  A. x  e.  w  A. y  e.  w  (
 g `  ( x ( +g  `  s )
 y ) )  =  ( ( g `  x ) ( +g  `  t ) ( g `
  y ) ) ) } )
 
Theoremreldmghm 13312 Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |- 
 Rel  dom  GrpHom
 
Theoremisghm 13313* Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   =>    |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
  v ) ) ) ) )
 
Theoremisghm3 13314* Property of a group homomorphism, similar to ismhm 13033. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   =>    |-  (
 ( S  e.  Grp  /\  T  e.  Grp )  ->  ( F  e.  ( S  GrpHom  T )  <->  ( F : X
 --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `  v
 ) ) ) ) )
 
Theoremghmgrp1 13315 A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
 
Theoremghmgrp2 13316 A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
 
Theoremghmf 13317 A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   =>    |-  ( F  e.  ( S  GrpHom  T ) 
 ->  F : X --> Y )
 
Theoremghmlin 13318 A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  X  =  ( Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   =>    |-  (
 ( F  e.  ( S  GrpHom  T )  /\  U  e.  X  /\  V  e.  X )  ->  ( F `  ( U  .+  V ) )  =  ( ( F `
  U )  .+^  ( F `  V ) ) )
 
Theoremghmid 13319 A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  Y  =  ( 0g
 `  S )   &    |-  .0.  =  ( 0g `  T )   =>    |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  Y )  =  .0.  )
 
Theoremghminv 13320 A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  B  =  ( Base `  S )   &    |-  M  =  ( invg `  S )   &    |-  N  =  ( invg `  T )   =>    |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  X  e.  B )  ->  ( F `  ( M `  X ) )  =  ( N `
  ( F `  X ) ) )
 
Theoremghmsub 13321 Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  B  =  ( Base `  S )   &    |-  .-  =  ( -g `  S )   &    |-  N  =  ( -g `  T )   =>    |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  U  e.  B  /\  V  e.  B ) 
 ->  ( F `  ( U  .-  V ) )  =  ( ( F `
  U ) N ( F `  V ) ) )
 
Theoremisghmd 13322* Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   &    |-  ( ph  ->  S  e.  Grp )   &    |-  ( ph  ->  T  e.  Grp )   &    |-  ( ph  ->  F : X --> Y )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X )
 )  ->  ( F `  ( x  .+  y
 ) )  =  ( ( F `  x )  .+^  ( F `  y ) ) )   =>    |-  ( ph  ->  F  e.  ( S  GrpHom  T ) )
 
Theoremghmmhm 13323 A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S MndHom  T ) )
 
Theoremghmmhmb 13324 Group homomorphisms and monoid homomorphisms coincide. (Thus,  GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( S  GrpHom  T )  =  ( S MndHom  T ) )
 
Theoremghmex 13325 The set of group homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
 |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( S  GrpHom  T )  e.  _V )
 
Theoremghmmulg 13326 A group homomorphism preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .X.  =  (.g `  H )   =>    |-  ( ( F  e.  ( G  GrpHom  H ) 
 /\  N  e.  ZZ  /\  X  e.  B ) 
 ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X ) ) )
 
Theoremghmrn 13327 The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T ) )
 
Theorem0ghm 13328 The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
 |- 
 .0.  =  ( 0g `  N )   &    |-  B  =  (
 Base `  M )   =>    |-  ( ( M  e.  Grp  /\  N  e.  Grp )  ->  ( B  X.  {  .0.  } )  e.  ( M  GrpHom  N ) )
 
Theoremidghm 13329 The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )
 
Theoremresghm 13330 Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  U  =  ( Ss  X )   =>    |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  X  e.  (SubGrp `  S ) )  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )
 
Theoremresghm2 13331 One direction of resghm2b 13332. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
 |-  U  =  ( Ts  X )   =>    |-  ( ( F  e.  ( S  GrpHom  U ) 
 /\  X  e.  (SubGrp `  T ) )  ->  F  e.  ( S  GrpHom  T ) )
 
Theoremresghm2b 13332 Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
 |-  U  =  ( Ts  X )   =>    |-  ( ( X  e.  (SubGrp `  T )  /\  ran 
 F  C_  X )  ->  ( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
 
Theoremghmghmrn 13333 A group homomorphism from  G to  H is also a group homomorphism from  G to its image in  H. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by AV, 26-Aug-2021.)
 |-  U  =  ( Ts  ran 
 F )   =>    |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S  GrpHom  U ) )
 
Theoremghmco 13334 The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  ( ( F  e.  ( T  GrpHom  U ) 
 /\  G  e.  ( S  GrpHom  T ) ) 
 ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
 
Theoremghmima 13335 The image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  U  e.  (SubGrp `  S ) )  ->  ( F " U )  e.  (SubGrp `  T ) )
 
Theoremghmpreima 13336 The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  V  e.  (SubGrp `  T ) )  ->  ( `' F " V )  e.  (SubGrp `  S ) )
 
Theoremghmeql 13337 The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  G  e.  ( S  GrpHom  T ) ) 
 ->  dom  ( F  i^i  G )  e.  (SubGrp `  S ) )
 
Theoremghmnsgima 13338 The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  Y  =  ( Base `  T )   =>    |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( F " U )  e.  (NrmSGrp `  T ) )
 
Theoremghmnsgpreima 13339 The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  V  e.  (NrmSGrp `  T ) )  ->  ( `' F " V )  e.  (NrmSGrp `  S ) )
 
Theoremghmker 13340 The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |- 
 .0.  =  ( 0g `  T )   =>    |-  ( F  e.  ( S  GrpHom  T )  ->  ( `' F " {  .0.  } )  e.  (NrmSGrp `  S ) )
 
Theoremghmeqker 13341 Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  B  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  T )   &    |-  K  =  ( `' F " {  .0.  }
 )   &    |-  .-  =  ( -g `  S )   =>    |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  U  e.  B  /\  V  e.  B ) 
 ->  ( ( F `  U )  =  ( F `  V )  <->  ( U  .-  V )  e.  K ) )
 
Theoremf1ghm0to0 13342 If a group homomorphism  F is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( ( F  e.  ( R  GrpHom  S ) 
 /\  F : A -1-1-> B 
 /\  X  e.  A )  ->  ( ( F `
  X )  =  .0.  <->  X  =  N ) )
 
Theoremghmf1 13343* Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  A. x  e.  A  ( ( F `  x )  =  .0.  ->  x  =  N ) ) )
 
Theoremkerf1ghm 13344 A group homomorphism  F is injective if and only if its kernel is the singleton  { N }. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N } ) )
 
Theoremghmf1o 13345 A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   =>    |-  ( F  e.  ( S  GrpHom  T ) 
 ->  ( F : X -1-1-onto-> Y  <->  `' F  e.  ( T 
 GrpHom  S ) ) )
 
Theoremconjghm 13346* Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  X  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F  e.  ( G  GrpHom  G )  /\  F : X
 -1-1-onto-> X ) )
 
Theoremconjsubg 13347* A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  ran  F  e.  (SubGrp `  G ) )
 
Theoremconjsubgen 13348* A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  ~~  ran  F )
 
Theoremconjnmz 13349* A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   &    |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }   =>    |-  (
 ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
 
Theoremconjnmzb 13350* Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   &    |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }   =>    |-  ( S  e.  (SubGrp `  G )  ->  ( A  e.  N 
 <->  ( A  e.  X  /\  S  =  ran  F ) ) )
 
Theoremconjnsg 13351* A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  A  e.  X )  ->  S  =  ran  F )
 
Theoremqusghm 13352* If  Y is a normal subgroup of  G, then the "natural map" from elements to their cosets is a group homomorphism from  G to  G  /  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  H  =  ( G  /.s  ( G ~QG  Y ) )   &    |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )   =>    |-  ( Y  e.  (NrmSGrp `  G )  ->  F  e.  ( G  GrpHom  H ) )
 
Theoremghmpropd 13353* Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  J )
 )   &    |-  ( ph  ->  C  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  C  =  ( Base `  M )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  J )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  M ) y ) )   =>    |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
 
7.2.5  Abelian groups
 
7.2.5.1  Definition and basic properties
 
Syntaxccmn 13354 Extend class notation with class of all commutative monoids.
 class CMnd
 
Syntaxcabl 13355 Extend class notation with class of all Abelian groups.
 class  Abel
 
Definitiondf-cmn 13356* Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |- CMnd  =  { g  e.  Mnd  | 
 A. a  e.  ( Base `  g ) A. b  e.  ( Base `  g ) ( a ( +g  `  g
 ) b )  =  ( b ( +g  `  g ) a ) }
 
Definitiondf-abl 13357 Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |- 
 Abel  =  ( Grp  i^i CMnd )
 
Theoremisabl 13358 The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
 |-  ( G  e.  Abel  <->  ( G  e.  Grp  /\  G  e. CMnd ) )
 
Theoremablgrp 13359 An Abelian group is a group. (Contributed by NM, 26-Aug-2011.)
 |-  ( G  e.  Abel  ->  G  e.  Grp )
 
Theoremablgrpd 13360 An Abelian group is a group, deduction form of ablgrp 13359. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  G  e.  Abel )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremablcmn 13361 An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( G  e.  Abel  ->  G  e. CMnd )
 
Theoremablcmnd 13362 An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e.  Abel )   =>    |-  ( ph  ->  G  e. CMnd )
 
Theoremiscmn 13363* The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e. CMnd  <->  ( G  e.  Mnd  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  (
 y  .+  x )
 ) )
 
Theoremisabl2 13364* The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Abel  <->  ( G  e.  Grp  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
 
Theoremcmnpropd 13365* If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
 
Theoremablpropd 13366* If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  Abel 
 <->  L  e.  Abel )
 )
 
Theoremablprop 13367 If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.)
 |-  ( Base `  K )  =  ( Base `  L )   &    |-  ( +g  `  K )  =  ( +g  `  L )   =>    |-  ( K  e.  Abel  <->  L  e.  Abel )
 
Theoremiscmnd 13368* Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
 )  =  ( y 
 .+  x ) )   =>    |-  ( ph  ->  G  e. CMnd )
 
Theoremisabld 13369* Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
 )  =  ( y 
 .+  x ) )   =>    |-  ( ph  ->  G  e.  Abel
 )
 
Theoremisabli 13370* Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
 |-  G  e.  Grp   &    |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  (
 ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  =  (
 y  .+  x )
 )   =>    |-  G  e.  Abel
 
Theoremcmnmnd 13371 A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( G  e. CMnd  ->  G  e.  Mnd )
 
Theoremcmncom 13372 A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremablcom 13373 An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremcmn32 13374 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .+  Y ) 
 .+  Z )  =  ( ( X  .+  Z )  .+  Y ) )
 
Theoremcmn4 13375 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  ( ( X  .+  Y )  .+  ( Z 
 .+  W ) )  =  ( ( X 
 .+  Z )  .+  ( Y  .+  W ) ) )
 
Theoremcmn12 13376 Commutative/associative law for commutative monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( X 
 .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )
 
Theoremabl32 13377 Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .+  Y )  .+  Z )  =  ( ( X  .+  Z )  .+  Y ) )
 
Theoremcmnmndd 13378 A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e. CMnd )   =>    |-  ( ph  ->  G  e.  Mnd )
 
Theoremrinvmod 13379* Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6112. (Contributed by AV, 31-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
 
Theoremablinvadd 13380 The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
  X )  .+  ( N `  Y ) ) )
 
Theoremablsub2inv 13381 Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  .-  ( N `  Y ) )  =  ( Y  .-  X ) )
 
Theoremablsubadd 13382 Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  =  Z  <->  ( Y  .+  Z )  =  X ) )
 
Theoremablsub4 13383 Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B ) 
 /\  ( Z  e.  B  /\  W  e.  B ) )  ->  ( ( X  .+  Y ) 
 .-  ( Z  .+  W ) )  =  ( ( X  .-  Z )  .+  ( Y 
 .-  W ) ) )
 
Theoremabladdsub4 13384 Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B ) 
 /\  ( Z  e.  B  /\  W  e.  B ) )  ->  ( ( X  .+  Y )  =  ( Z  .+  W )  <->  ( X  .-  Z )  =  ( W  .-  Y ) ) )
 
Theoremabladdsub 13385 Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Y )  .-  Z )  =  (
 ( X  .-  Z )  .+  Y ) )
 
Theoremablpncan2 13386 Cancellation law for subtraction in an Abelian group. (Contributed by NM, 2-Oct-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .-  X )  =  Y )
 
Theoremablpncan3 13387 A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( X  .+  ( Y  .-  X ) )  =  Y )
 
Theoremablsubsub 13388 Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( ( X  .-  Y )  .+  Z ) )
 
Theoremablsubsub4 13389 Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  Y )  .-  Z )  =  ( X  .-  ( Y  .+  Z ) ) )
 
Theoremablpnpcan 13390 Cancellation law for mixed addition and subtraction. (pnpcan 8258 analog.) (Contributed by NM, 29-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .+  Y )  .-  ( X  .+  Z ) )  =  ( Y  .-  Z ) )
 
Theoremablnncan 13391 Cancellation law for group subtraction. (nncan 8248 analog.) (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .-  ( X  .-  Y ) )  =  Y )
 
Theoremablsub32 13392 Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  Y )  .-  Z )  =  ( ( X  .-  Z )  .-  Y ) )
 
Theoremablnnncan 13393 Cancellation law for group subtraction. (nnncan 8254 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  ( Y  .-  Z ) ) 
 .-  Z )  =  ( X  .-  Y ) )
 
Theoremablnnncan1 13394 Cancellation law for group subtraction. (nnncan1 8255 analog.) (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  Y )  .-  ( X  .-  Z ) )  =  ( Z  .-  Y ) )
 
Theoremablsubsub23 13395 Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
 |-  V  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  ->  ( ( A  .-  B )  =  C  <->  ( A  .-  C )  =  B ) )
 
Theoremghmfghm 13396* The function fulfilling the conditions of ghmgrp 13188 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
 |-  X  =  ( Base `  G )   &    |-  Y  =  (
 Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  (
 ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  F  e.  ( G  GrpHom  H ) )
 
Theoremghmcmn 13397* The image of a commutative monoid 
G under a group homomorphism  F is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.)
 |-  X  =  ( Base `  G )   &    |-  Y  =  (
 Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  (
 ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e. CMnd )   =>    |-  ( ph  ->  H  e. CMnd )
 
Theoremghmabl 13398* The image of an abelian group  G under a group homomorphism  F is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
 |-  X  =  ( Base `  G )   &    |-  Y  =  (
 Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  (
 ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Abel
 )   =>    |-  ( ph  ->  H  e.  Abel )
 
Theoreminvghm 13399 The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( G  e.  Abel  <->  I  e.  ( G  GrpHom  G ) )
 
Theoremeqgabl 13400 Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  X  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .~  =  ( G ~QG  S )   =>    |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( B  .-  A )  e.  S ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >