ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffvalg Unicode version

Theorem scaffvalg 13938
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
scaffval.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
scaffvalg  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
Distinct variable groups:    x, y, B   
x, K, y    x,  .x. , y    x, W, y   
x, V, y
Allowed substitution hints:    .xb ( x, y)    F( x, y)

Proof of Theorem scaffvalg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2  |-  .xb  =  ( .sf `  W
)
2 elex 2774 . . 3  |-  ( W  e.  V  ->  W  e.  _V )
3 df-scaf 13922 . . . 4  |-  .sf 
=  ( w  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  w ) ) ,  y  e.  ( Base `  w )  |->  ( x ( .s `  w
) y ) ) )
4 fveq2 5561 . . . . . . . 8  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
5 scaffval.f . . . . . . . 8  |-  F  =  (Scalar `  W )
64, 5eqtr4di 2247 . . . . . . 7  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
76fveq2d 5565 . . . . . 6  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  F )
)
8 scaffval.k . . . . . 6  |-  K  =  ( Base `  F
)
97, 8eqtr4di 2247 . . . . 5  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
10 fveq2 5561 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
11 scaffval.b . . . . . 6  |-  B  =  ( Base `  W
)
1210, 11eqtr4di 2247 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  B )
13 fveq2 5561 . . . . . . 7  |-  ( w  =  W  ->  ( .s `  w )  =  ( .s `  W
) )
14 scaffval.s . . . . . . 7  |-  .x.  =  ( .s `  W )
1513, 14eqtr4di 2247 . . . . . 6  |-  ( w  =  W  ->  ( .s `  w )  = 
.x.  )
1615oveqd 5942 . . . . 5  |-  ( w  =  W  ->  (
x ( .s `  w ) y )  =  ( x  .x.  y ) )
179, 12, 16mpoeq123dv 5988 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  (Scalar `  w )
) ,  y  e.  ( Base `  w
)  |->  ( x ( .s `  w ) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
18 elex 2774 . . . 4  |-  ( W  e.  _V  ->  W  e.  _V )
19 basfn 12761 . . . . . . 7  |-  Base  Fn  _V
20 scaslid 12855 . . . . . . . . 9  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
2120slotex 12730 . . . . . . . 8  |-  ( W  e.  _V  ->  (Scalar `  W )  e.  _V )
225, 21eqeltrid 2283 . . . . . . 7  |-  ( W  e.  _V  ->  F  e.  _V )
23 funfvex 5578 . . . . . . . 8  |-  ( ( Fun  Base  /\  F  e. 
dom  Base )  ->  ( Base `  F )  e. 
_V )
2423funfni 5361 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  F  e.  _V )  ->  ( Base `  F )  e. 
_V )
2519, 22, 24sylancr 414 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  F )  e. 
_V )
268, 25eqeltrid 2283 . . . . 5  |-  ( W  e.  _V  ->  K  e.  _V )
27 funfvex 5578 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
2827funfni 5361 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
2919, 28mpan 424 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  W )  e. 
_V )
3011, 29eqeltrid 2283 . . . . 5  |-  ( W  e.  _V  ->  B  e.  _V )
31 mpoexga 6279 . . . . 5  |-  ( ( K  e.  _V  /\  B  e.  _V )  ->  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) )  e.  _V )
3226, 30, 31syl2anc 411 . . . 4  |-  ( W  e.  _V  ->  (
x  e.  K , 
y  e.  B  |->  ( x  .x.  y ) )  e.  _V )
333, 17, 18, 32fvmptd3 5658 . . 3  |-  ( W  e.  _V  ->  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
342, 33syl 14 . 2  |-  ( W  e.  V  ->  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
351, 34eqtrid 2241 1  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   Basecbs 12703  Scalarcsca 12783   .scvsca 12784   .sfcscaf 13920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-ndx 12706  df-slot 12707  df-base 12709  df-sca 12796  df-scaf 13922
This theorem is referenced by:  scafvalg  13939  scafeqg  13940  scaffng  13941  lmodscaf  13942
  Copyright terms: Public domain W3C validator