ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffvalg Unicode version

Theorem scaffvalg 13619
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
scaffval.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
scaffvalg  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
Distinct variable groups:    x, y, B   
x, K, y    x,  .x. , y    x, W, y   
x, V, y
Allowed substitution hints:    .xb ( x, y)    F( x, y)

Proof of Theorem scaffvalg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2  |-  .xb  =  ( .sf `  W
)
2 elex 2763 . . 3  |-  ( W  e.  V  ->  W  e.  _V )
3 df-scaf 13603 . . . 4  |-  .sf 
=  ( w  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  w ) ) ,  y  e.  ( Base `  w )  |->  ( x ( .s `  w
) y ) ) )
4 fveq2 5534 . . . . . . . 8  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
5 scaffval.f . . . . . . . 8  |-  F  =  (Scalar `  W )
64, 5eqtr4di 2240 . . . . . . 7  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
76fveq2d 5538 . . . . . 6  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  F )
)
8 scaffval.k . . . . . 6  |-  K  =  ( Base `  F
)
97, 8eqtr4di 2240 . . . . 5  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
10 fveq2 5534 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
11 scaffval.b . . . . . 6  |-  B  =  ( Base `  W
)
1210, 11eqtr4di 2240 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  B )
13 fveq2 5534 . . . . . . 7  |-  ( w  =  W  ->  ( .s `  w )  =  ( .s `  W
) )
14 scaffval.s . . . . . . 7  |-  .x.  =  ( .s `  W )
1513, 14eqtr4di 2240 . . . . . 6  |-  ( w  =  W  ->  ( .s `  w )  = 
.x.  )
1615oveqd 5912 . . . . 5  |-  ( w  =  W  ->  (
x ( .s `  w ) y )  =  ( x  .x.  y ) )
179, 12, 16mpoeq123dv 5957 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  (Scalar `  w )
) ,  y  e.  ( Base `  w
)  |->  ( x ( .s `  w ) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
18 elex 2763 . . . 4  |-  ( W  e.  _V  ->  W  e.  _V )
19 basfn 12569 . . . . . . 7  |-  Base  Fn  _V
20 scaslid 12661 . . . . . . . . 9  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
2120slotex 12538 . . . . . . . 8  |-  ( W  e.  _V  ->  (Scalar `  W )  e.  _V )
225, 21eqeltrid 2276 . . . . . . 7  |-  ( W  e.  _V  ->  F  e.  _V )
23 funfvex 5551 . . . . . . . 8  |-  ( ( Fun  Base  /\  F  e. 
dom  Base )  ->  ( Base `  F )  e. 
_V )
2423funfni 5335 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  F  e.  _V )  ->  ( Base `  F )  e. 
_V )
2519, 22, 24sylancr 414 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  F )  e. 
_V )
268, 25eqeltrid 2276 . . . . 5  |-  ( W  e.  _V  ->  K  e.  _V )
27 funfvex 5551 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
2827funfni 5335 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
2919, 28mpan 424 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  W )  e. 
_V )
3011, 29eqeltrid 2276 . . . . 5  |-  ( W  e.  _V  ->  B  e.  _V )
31 mpoexga 6236 . . . . 5  |-  ( ( K  e.  _V  /\  B  e.  _V )  ->  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) )  e.  _V )
3226, 30, 31syl2anc 411 . . . 4  |-  ( W  e.  _V  ->  (
x  e.  K , 
y  e.  B  |->  ( x  .x.  y ) )  e.  _V )
333, 17, 18, 32fvmptd3 5629 . . 3  |-  ( W  e.  _V  ->  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
342, 33syl 14 . 2  |-  ( W  e.  V  ->  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
351, 34eqtrid 2234 1  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   _Vcvv 2752    Fn wfn 5230   ` cfv 5235  (class class class)co 5895    e. cmpo 5897   Basecbs 12511  Scalarcsca 12589   .scvsca 12590   .sfcscaf 13601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-5 9010  df-ndx 12514  df-slot 12515  df-base 12517  df-sca 12602  df-scaf 13603
This theorem is referenced by:  scafvalg  13620  scafeqg  13621  scaffng  13622  lmodscaf  13623
  Copyright terms: Public domain W3C validator