ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffvalg Unicode version

Theorem scaffvalg 14143
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
scaffval.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
scaffvalg  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
Distinct variable groups:    x, y, B   
x, K, y    x,  .x. , y    x, W, y   
x, V, y
Allowed substitution hints:    .xb ( x, y)    F( x, y)

Proof of Theorem scaffvalg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2  |-  .xb  =  ( .sf `  W
)
2 elex 2785 . . 3  |-  ( W  e.  V  ->  W  e.  _V )
3 df-scaf 14127 . . . 4  |-  .sf 
=  ( w  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  w ) ) ,  y  e.  ( Base `  w )  |->  ( x ( .s `  w
) y ) ) )
4 fveq2 5589 . . . . . . . 8  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
5 scaffval.f . . . . . . . 8  |-  F  =  (Scalar `  W )
64, 5eqtr4di 2257 . . . . . . 7  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
76fveq2d 5593 . . . . . 6  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  F )
)
8 scaffval.k . . . . . 6  |-  K  =  ( Base `  F
)
97, 8eqtr4di 2257 . . . . 5  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
10 fveq2 5589 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
11 scaffval.b . . . . . 6  |-  B  =  ( Base `  W
)
1210, 11eqtr4di 2257 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  B )
13 fveq2 5589 . . . . . . 7  |-  ( w  =  W  ->  ( .s `  w )  =  ( .s `  W
) )
14 scaffval.s . . . . . . 7  |-  .x.  =  ( .s `  W )
1513, 14eqtr4di 2257 . . . . . 6  |-  ( w  =  W  ->  ( .s `  w )  = 
.x.  )
1615oveqd 5974 . . . . 5  |-  ( w  =  W  ->  (
x ( .s `  w ) y )  =  ( x  .x.  y ) )
179, 12, 16mpoeq123dv 6020 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  (Scalar `  w )
) ,  y  e.  ( Base `  w
)  |->  ( x ( .s `  w ) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
18 elex 2785 . . . 4  |-  ( W  e.  _V  ->  W  e.  _V )
19 basfn 12965 . . . . . . 7  |-  Base  Fn  _V
20 scaslid 13060 . . . . . . . . 9  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
2120slotex 12934 . . . . . . . 8  |-  ( W  e.  _V  ->  (Scalar `  W )  e.  _V )
225, 21eqeltrid 2293 . . . . . . 7  |-  ( W  e.  _V  ->  F  e.  _V )
23 funfvex 5606 . . . . . . . 8  |-  ( ( Fun  Base  /\  F  e. 
dom  Base )  ->  ( Base `  F )  e. 
_V )
2423funfni 5385 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  F  e.  _V )  ->  ( Base `  F )  e. 
_V )
2519, 22, 24sylancr 414 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  F )  e. 
_V )
268, 25eqeltrid 2293 . . . . 5  |-  ( W  e.  _V  ->  K  e.  _V )
27 funfvex 5606 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
2827funfni 5385 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
2919, 28mpan 424 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  W )  e. 
_V )
3011, 29eqeltrid 2293 . . . . 5  |-  ( W  e.  _V  ->  B  e.  _V )
31 mpoexga 6311 . . . . 5  |-  ( ( K  e.  _V  /\  B  e.  _V )  ->  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) )  e.  _V )
3226, 30, 31syl2anc 411 . . . 4  |-  ( W  e.  _V  ->  (
x  e.  K , 
y  e.  B  |->  ( x  .x.  y ) )  e.  _V )
333, 17, 18, 32fvmptd3 5686 . . 3  |-  ( W  e.  _V  ->  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
342, 33syl 14 . 2  |-  ( W  e.  V  ->  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
351, 34eqtrid 2251 1  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773    Fn wfn 5275   ` cfv 5280  (class class class)co 5957    e. cmpo 5959   Basecbs 12907  Scalarcsca 12987   .scvsca 12988   .sfcscaf 14125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-ndx 12910  df-slot 12911  df-base 12913  df-sca 13000  df-scaf 14127
This theorem is referenced by:  scafvalg  14144  scafeqg  14145  scaffng  14146  lmodscaf  14147
  Copyright terms: Public domain W3C validator