| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaffvalg | Unicode version | ||
| Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
| Ref | Expression |
|---|---|
| scaffval.b |
|
| scaffval.f |
|
| scaffval.k |
|
| scaffval.a |
|
| scaffval.s |
|
| Ref | Expression |
|---|---|
| scaffvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.a |
. 2
| |
| 2 | elex 2785 |
. . 3
| |
| 3 | df-scaf 14127 |
. . . 4
| |
| 4 | fveq2 5589 |
. . . . . . . 8
| |
| 5 | scaffval.f |
. . . . . . . 8
| |
| 6 | 4, 5 | eqtr4di 2257 |
. . . . . . 7
|
| 7 | 6 | fveq2d 5593 |
. . . . . 6
|
| 8 | scaffval.k |
. . . . . 6
| |
| 9 | 7, 8 | eqtr4di 2257 |
. . . . 5
|
| 10 | fveq2 5589 |
. . . . . 6
| |
| 11 | scaffval.b |
. . . . . 6
| |
| 12 | 10, 11 | eqtr4di 2257 |
. . . . 5
|
| 13 | fveq2 5589 |
. . . . . . 7
| |
| 14 | scaffval.s |
. . . . . . 7
| |
| 15 | 13, 14 | eqtr4di 2257 |
. . . . . 6
|
| 16 | 15 | oveqd 5974 |
. . . . 5
|
| 17 | 9, 12, 16 | mpoeq123dv 6020 |
. . . 4
|
| 18 | elex 2785 |
. . . 4
| |
| 19 | basfn 12965 |
. . . . . . 7
| |
| 20 | scaslid 13060 |
. . . . . . . . 9
| |
| 21 | 20 | slotex 12934 |
. . . . . . . 8
|
| 22 | 5, 21 | eqeltrid 2293 |
. . . . . . 7
|
| 23 | funfvex 5606 |
. . . . . . . 8
| |
| 24 | 23 | funfni 5385 |
. . . . . . 7
|
| 25 | 19, 22, 24 | sylancr 414 |
. . . . . 6
|
| 26 | 8, 25 | eqeltrid 2293 |
. . . . 5
|
| 27 | funfvex 5606 |
. . . . . . . 8
| |
| 28 | 27 | funfni 5385 |
. . . . . . 7
|
| 29 | 19, 28 | mpan 424 |
. . . . . 6
|
| 30 | 11, 29 | eqeltrid 2293 |
. . . . 5
|
| 31 | mpoexga 6311 |
. . . . 5
| |
| 32 | 26, 30, 31 | syl2anc 411 |
. . . 4
|
| 33 | 3, 17, 18, 32 | fvmptd3 5686 |
. . 3
|
| 34 | 2, 33 | syl 14 |
. 2
|
| 35 | 1, 34 | eqtrid 2251 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-ndx 12910 df-slot 12911 df-base 12913 df-sca 13000 df-scaf 14127 |
| This theorem is referenced by: scafvalg 14144 scafeqg 14145 scaffng 14146 lmodscaf 14147 |
| Copyright terms: Public domain | W3C validator |