ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffvalg Unicode version

Theorem scaffvalg 13401
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
scaffval.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
scaffvalg  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
Distinct variable groups:    x, y, B   
x, K, y    x,  .x. , y    x, W, y   
x, V, y
Allowed substitution hints:    .xb ( x, y)    F( x, y)

Proof of Theorem scaffvalg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2  |-  .xb  =  ( .sf `  W
)
2 elex 2750 . . 3  |-  ( W  e.  V  ->  W  e.  _V )
3 df-scaf 13385 . . . 4  |-  .sf 
=  ( w  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  w ) ) ,  y  e.  ( Base `  w )  |->  ( x ( .s `  w
) y ) ) )
4 fveq2 5517 . . . . . . . 8  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
5 scaffval.f . . . . . . . 8  |-  F  =  (Scalar `  W )
64, 5eqtr4di 2228 . . . . . . 7  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
76fveq2d 5521 . . . . . 6  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  F )
)
8 scaffval.k . . . . . 6  |-  K  =  ( Base `  F
)
97, 8eqtr4di 2228 . . . . 5  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
10 fveq2 5517 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
11 scaffval.b . . . . . 6  |-  B  =  ( Base `  W
)
1210, 11eqtr4di 2228 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  B )
13 fveq2 5517 . . . . . . 7  |-  ( w  =  W  ->  ( .s `  w )  =  ( .s `  W
) )
14 scaffval.s . . . . . . 7  |-  .x.  =  ( .s `  W )
1513, 14eqtr4di 2228 . . . . . 6  |-  ( w  =  W  ->  ( .s `  w )  = 
.x.  )
1615oveqd 5894 . . . . 5  |-  ( w  =  W  ->  (
x ( .s `  w ) y )  =  ( x  .x.  y ) )
179, 12, 16mpoeq123dv 5939 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  (Scalar `  w )
) ,  y  e.  ( Base `  w
)  |->  ( x ( .s `  w ) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
18 elex 2750 . . . 4  |-  ( W  e.  _V  ->  W  e.  _V )
19 basfn 12522 . . . . . . 7  |-  Base  Fn  _V
20 scaslid 12613 . . . . . . . . 9  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
2120slotex 12491 . . . . . . . 8  |-  ( W  e.  _V  ->  (Scalar `  W )  e.  _V )
225, 21eqeltrid 2264 . . . . . . 7  |-  ( W  e.  _V  ->  F  e.  _V )
23 funfvex 5534 . . . . . . . 8  |-  ( ( Fun  Base  /\  F  e. 
dom  Base )  ->  ( Base `  F )  e. 
_V )
2423funfni 5318 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  F  e.  _V )  ->  ( Base `  F )  e. 
_V )
2519, 22, 24sylancr 414 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  F )  e. 
_V )
268, 25eqeltrid 2264 . . . . 5  |-  ( W  e.  _V  ->  K  e.  _V )
27 funfvex 5534 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
2827funfni 5318 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
2919, 28mpan 424 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  W )  e. 
_V )
3011, 29eqeltrid 2264 . . . . 5  |-  ( W  e.  _V  ->  B  e.  _V )
31 mpoexga 6215 . . . . 5  |-  ( ( K  e.  _V  /\  B  e.  _V )  ->  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) )  e.  _V )
3226, 30, 31syl2anc 411 . . . 4  |-  ( W  e.  _V  ->  (
x  e.  K , 
y  e.  B  |->  ( x  .x.  y ) )  e.  _V )
333, 17, 18, 32fvmptd3 5611 . . 3  |-  ( W  e.  _V  ->  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
342, 33syl 14 . 2  |-  ( W  e.  V  ->  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
351, 34eqtrid 2222 1  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739    Fn wfn 5213   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   Basecbs 12464  Scalarcsca 12541   .scvsca 12542   .sfcscaf 13383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-ndx 12467  df-slot 12468  df-base 12470  df-sca 12554  df-scaf 13385
This theorem is referenced by:  scafvalg  13402  scafeqg  13403  scaffng  13404  lmodscaf  13405
  Copyright terms: Public domain W3C validator