ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffvalg Unicode version

Theorem scaffvalg 13805
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
scaffval.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
scaffvalg  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
Distinct variable groups:    x, y, B   
x, K, y    x,  .x. , y    x, W, y   
x, V, y
Allowed substitution hints:    .xb ( x, y)    F( x, y)

Proof of Theorem scaffvalg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2  |-  .xb  =  ( .sf `  W
)
2 elex 2771 . . 3  |-  ( W  e.  V  ->  W  e.  _V )
3 df-scaf 13789 . . . 4  |-  .sf 
=  ( w  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  w ) ) ,  y  e.  ( Base `  w )  |->  ( x ( .s `  w
) y ) ) )
4 fveq2 5555 . . . . . . . 8  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
5 scaffval.f . . . . . . . 8  |-  F  =  (Scalar `  W )
64, 5eqtr4di 2244 . . . . . . 7  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
76fveq2d 5559 . . . . . 6  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  F )
)
8 scaffval.k . . . . . 6  |-  K  =  ( Base `  F
)
97, 8eqtr4di 2244 . . . . 5  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
10 fveq2 5555 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
11 scaffval.b . . . . . 6  |-  B  =  ( Base `  W
)
1210, 11eqtr4di 2244 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  B )
13 fveq2 5555 . . . . . . 7  |-  ( w  =  W  ->  ( .s `  w )  =  ( .s `  W
) )
14 scaffval.s . . . . . . 7  |-  .x.  =  ( .s `  W )
1513, 14eqtr4di 2244 . . . . . 6  |-  ( w  =  W  ->  ( .s `  w )  = 
.x.  )
1615oveqd 5936 . . . . 5  |-  ( w  =  W  ->  (
x ( .s `  w ) y )  =  ( x  .x.  y ) )
179, 12, 16mpoeq123dv 5981 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  (Scalar `  w )
) ,  y  e.  ( Base `  w
)  |->  ( x ( .s `  w ) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
18 elex 2771 . . . 4  |-  ( W  e.  _V  ->  W  e.  _V )
19 basfn 12679 . . . . . . 7  |-  Base  Fn  _V
20 scaslid 12773 . . . . . . . . 9  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
2120slotex 12648 . . . . . . . 8  |-  ( W  e.  _V  ->  (Scalar `  W )  e.  _V )
225, 21eqeltrid 2280 . . . . . . 7  |-  ( W  e.  _V  ->  F  e.  _V )
23 funfvex 5572 . . . . . . . 8  |-  ( ( Fun  Base  /\  F  e. 
dom  Base )  ->  ( Base `  F )  e. 
_V )
2423funfni 5355 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  F  e.  _V )  ->  ( Base `  F )  e. 
_V )
2519, 22, 24sylancr 414 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  F )  e. 
_V )
268, 25eqeltrid 2280 . . . . 5  |-  ( W  e.  _V  ->  K  e.  _V )
27 funfvex 5572 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
2827funfni 5355 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
2919, 28mpan 424 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  W )  e. 
_V )
3011, 29eqeltrid 2280 . . . . 5  |-  ( W  e.  _V  ->  B  e.  _V )
31 mpoexga 6267 . . . . 5  |-  ( ( K  e.  _V  /\  B  e.  _V )  ->  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) )  e.  _V )
3226, 30, 31syl2anc 411 . . . 4  |-  ( W  e.  _V  ->  (
x  e.  K , 
y  e.  B  |->  ( x  .x.  y ) )  e.  _V )
333, 17, 18, 32fvmptd3 5652 . . 3  |-  ( W  e.  _V  ->  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
342, 33syl 14 . 2  |-  ( W  e.  V  ->  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
351, 34eqtrid 2238 1  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    Fn wfn 5250   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   Basecbs 12621  Scalarcsca 12701   .scvsca 12702   .sfcscaf 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-ndx 12624  df-slot 12625  df-base 12627  df-sca 12714  df-scaf 13789
This theorem is referenced by:  scafvalg  13806  scafeqg  13807  scaffng  13808  lmodscaf  13809
  Copyright terms: Public domain W3C validator