| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaffvalg | Unicode version | ||
| Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
| Ref | Expression |
|---|---|
| scaffval.b |
|
| scaffval.f |
|
| scaffval.k |
|
| scaffval.a |
|
| scaffval.s |
|
| Ref | Expression |
|---|---|
| scaffvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.a |
. 2
| |
| 2 | elex 2774 |
. . 3
| |
| 3 | df-scaf 13922 |
. . . 4
| |
| 4 | fveq2 5561 |
. . . . . . . 8
| |
| 5 | scaffval.f |
. . . . . . . 8
| |
| 6 | 4, 5 | eqtr4di 2247 |
. . . . . . 7
|
| 7 | 6 | fveq2d 5565 |
. . . . . 6
|
| 8 | scaffval.k |
. . . . . 6
| |
| 9 | 7, 8 | eqtr4di 2247 |
. . . . 5
|
| 10 | fveq2 5561 |
. . . . . 6
| |
| 11 | scaffval.b |
. . . . . 6
| |
| 12 | 10, 11 | eqtr4di 2247 |
. . . . 5
|
| 13 | fveq2 5561 |
. . . . . . 7
| |
| 14 | scaffval.s |
. . . . . . 7
| |
| 15 | 13, 14 | eqtr4di 2247 |
. . . . . 6
|
| 16 | 15 | oveqd 5942 |
. . . . 5
|
| 17 | 9, 12, 16 | mpoeq123dv 5988 |
. . . 4
|
| 18 | elex 2774 |
. . . 4
| |
| 19 | basfn 12761 |
. . . . . . 7
| |
| 20 | scaslid 12855 |
. . . . . . . . 9
| |
| 21 | 20 | slotex 12730 |
. . . . . . . 8
|
| 22 | 5, 21 | eqeltrid 2283 |
. . . . . . 7
|
| 23 | funfvex 5578 |
. . . . . . . 8
| |
| 24 | 23 | funfni 5361 |
. . . . . . 7
|
| 25 | 19, 22, 24 | sylancr 414 |
. . . . . 6
|
| 26 | 8, 25 | eqeltrid 2283 |
. . . . 5
|
| 27 | funfvex 5578 |
. . . . . . . 8
| |
| 28 | 27 | funfni 5361 |
. . . . . . 7
|
| 29 | 19, 28 | mpan 424 |
. . . . . 6
|
| 30 | 11, 29 | eqeltrid 2283 |
. . . . 5
|
| 31 | mpoexga 6279 |
. . . . 5
| |
| 32 | 26, 30, 31 | syl2anc 411 |
. . . 4
|
| 33 | 3, 17, 18, 32 | fvmptd3 5658 |
. . 3
|
| 34 | 2, 33 | syl 14 |
. 2
|
| 35 | 1, 34 | eqtrid 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-ndx 12706 df-slot 12707 df-base 12709 df-sca 12796 df-scaf 13922 |
| This theorem is referenced by: scafvalg 13939 scafeqg 13940 scaffng 13941 lmodscaf 13942 |
| Copyright terms: Public domain | W3C validator |