| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaffvalg | Unicode version | ||
| Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
| Ref | Expression |
|---|---|
| scaffval.b |
|
| scaffval.f |
|
| scaffval.k |
|
| scaffval.a |
|
| scaffval.s |
|
| Ref | Expression |
|---|---|
| scaffvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.a |
. 2
| |
| 2 | elex 2811 |
. . 3
| |
| 3 | df-scaf 14248 |
. . . 4
| |
| 4 | fveq2 5626 |
. . . . . . . 8
| |
| 5 | scaffval.f |
. . . . . . . 8
| |
| 6 | 4, 5 | eqtr4di 2280 |
. . . . . . 7
|
| 7 | 6 | fveq2d 5630 |
. . . . . 6
|
| 8 | scaffval.k |
. . . . . 6
| |
| 9 | 7, 8 | eqtr4di 2280 |
. . . . 5
|
| 10 | fveq2 5626 |
. . . . . 6
| |
| 11 | scaffval.b |
. . . . . 6
| |
| 12 | 10, 11 | eqtr4di 2280 |
. . . . 5
|
| 13 | fveq2 5626 |
. . . . . . 7
| |
| 14 | scaffval.s |
. . . . . . 7
| |
| 15 | 13, 14 | eqtr4di 2280 |
. . . . . 6
|
| 16 | 15 | oveqd 6017 |
. . . . 5
|
| 17 | 9, 12, 16 | mpoeq123dv 6065 |
. . . 4
|
| 18 | elex 2811 |
. . . 4
| |
| 19 | basfn 13086 |
. . . . . . 7
| |
| 20 | scaslid 13181 |
. . . . . . . . 9
| |
| 21 | 20 | slotex 13054 |
. . . . . . . 8
|
| 22 | 5, 21 | eqeltrid 2316 |
. . . . . . 7
|
| 23 | funfvex 5643 |
. . . . . . . 8
| |
| 24 | 23 | funfni 5422 |
. . . . . . 7
|
| 25 | 19, 22, 24 | sylancr 414 |
. . . . . 6
|
| 26 | 8, 25 | eqeltrid 2316 |
. . . . 5
|
| 27 | funfvex 5643 |
. . . . . . . 8
| |
| 28 | 27 | funfni 5422 |
. . . . . . 7
|
| 29 | 19, 28 | mpan 424 |
. . . . . 6
|
| 30 | 11, 29 | eqeltrid 2316 |
. . . . 5
|
| 31 | mpoexga 6356 |
. . . . 5
| |
| 32 | 26, 30, 31 | syl2anc 411 |
. . . 4
|
| 33 | 3, 17, 18, 32 | fvmptd3 5727 |
. . 3
|
| 34 | 2, 33 | syl 14 |
. 2
|
| 35 | 1, 34 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-ndx 13030 df-slot 13031 df-base 13033 df-sca 13121 df-scaf 14248 |
| This theorem is referenced by: scafvalg 14265 scafeqg 14266 scaffng 14267 lmodscaf 14268 |
| Copyright terms: Public domain | W3C validator |