ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg Unicode version

Theorem issubrg 14185
Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
Hypotheses
Ref Expression
issubrg.b  |-  B  =  ( Base `  R
)
issubrg.i  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
issubrg  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )

Proof of Theorem issubrg
Dummy variables  s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrg 14183 . . 3  |- SubRing  =  ( r  e.  Ring  |->  { s  e.  ~P ( Base `  r )  |  ( ( rs  s )  e. 
Ring  /\  ( 1r `  r )  e.  s ) } )
21mptrcl 5717 . 2  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
3 simpll 527 . 2  |-  ( ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) )  ->  R  e.  Ring )
4 fveq2 5627 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
5 issubrg.b . . . . . . . 8  |-  B  =  ( Base `  R
)
64, 5eqtr4di 2280 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  B )
76pweqd 3654 . . . . . 6  |-  ( r  =  R  ->  ~P ( Base `  r )  =  ~P B )
8 oveq1 6008 . . . . . . . 8  |-  ( r  =  R  ->  (
rs  s )  =  ( Rs  s ) )
98eleq1d 2298 . . . . . . 7  |-  ( r  =  R  ->  (
( rs  s )  e. 
Ring 
<->  ( Rs  s )  e. 
Ring ) )
10 fveq2 5627 . . . . . . . . 9  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
11 issubrg.i . . . . . . . . 9  |-  .1.  =  ( 1r `  R )
1210, 11eqtr4di 2280 . . . . . . . 8  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
1312eleq1d 2298 . . . . . . 7  |-  ( r  =  R  ->  (
( 1r `  r
)  e.  s  <->  .1.  e.  s ) )
149, 13anbi12d 473 . . . . . 6  |-  ( r  =  R  ->  (
( ( rs  s )  e.  Ring  /\  ( 1r `  r )  e.  s )  <->  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) ) )
157, 14rabeqbidv 2794 . . . . 5  |-  ( r  =  R  ->  { s  e.  ~P ( Base `  r )  |  ( ( rs  s )  e. 
Ring  /\  ( 1r `  r )  e.  s ) }  =  {
s  e.  ~P B  |  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } )
16 id 19 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Ring )
17 basfn 13091 . . . . . . . . 9  |-  Base  Fn  _V
18 elex 2811 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
_V )
19 funfvex 5644 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2019funfni 5423 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2117, 18, 20sylancr 414 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
225, 21eqeltrid 2316 . . . . . . 7  |-  ( R  e.  Ring  ->  B  e. 
_V )
2322pwexd 4265 . . . . . 6  |-  ( R  e.  Ring  ->  ~P B  e.  _V )
24 rabexg 4227 . . . . . 6  |-  ( ~P B  e.  _V  ->  { s  e.  ~P B  |  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) }  e.  _V )
2523, 24syl 14 . . . . 5  |-  ( R  e.  Ring  ->  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) }  e.  _V )
261, 15, 16, 25fvmptd3 5728 . . . 4  |-  ( R  e.  Ring  ->  (SubRing `  R
)  =  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } )
2726eleq2d 2299 . . 3  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  A  e.  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } ) )
28 oveq2 6009 . . . . . . . 8  |-  ( s  =  A  ->  ( Rs  s )  =  ( Rs  A ) )
2928eleq1d 2298 . . . . . . 7  |-  ( s  =  A  ->  (
( Rs  s )  e. 
Ring 
<->  ( Rs  A )  e.  Ring ) )
30 eleq2 2293 . . . . . . 7  |-  ( s  =  A  ->  (  .1.  e.  s  <->  .1.  e.  A ) )
3129, 30anbi12d 473 . . . . . 6  |-  ( s  =  A  ->  (
( ( Rs  s )  e.  Ring  /\  .1.  e.  s )  <->  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
3231elrab 2959 . . . . 5  |-  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( A  e.  ~P B  /\  (
( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
3332a1i 9 . . . 4  |-  ( R  e.  Ring  ->  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( A  e.  ~P B  /\  (
( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) ) )
34 elpw2g 4240 . . . . . 6  |-  ( B  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
3522, 34syl 14 . . . . 5  |-  ( R  e.  Ring  ->  ( A  e.  ~P B  <->  A  C_  B
) )
3635anbi1d 465 . . . 4  |-  ( R  e.  Ring  ->  ( ( A  e.  ~P B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) ) )
37 an12 561 . . . . 5  |-  ( ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) )
3837a1i 9 . . . 4  |-  ( R  e.  Ring  ->  ( ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) ) )
3933, 36, 383bitrd 214 . . 3  |-  ( R  e.  Ring  ->  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) ) )
40 ibar 301 . . . 4  |-  ( R  e.  Ring  ->  ( ( Rs  A )  e.  Ring  <->  ( R  e.  Ring  /\  ( Rs  A )  e.  Ring ) ) )
4140anbi1d 465 . . 3  |-  ( R  e.  Ring  ->  ( ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) )  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
4227, 39, 413bitrd 214 . 2  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
432, 3, 42pm5.21nii 709 1  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   1rcur 13922   Ringcrg 13959  SubRingcsubrg 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-subrg 14183
This theorem is referenced by:  subrgss  14186  subrgid  14187  subrgring  14188  subrgrcl  14190  subrg1cl  14193  issubrg2  14205  subsubrg  14209  subrgpropd  14217
  Copyright terms: Public domain W3C validator