ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg Unicode version

Theorem issubrg 13528
Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
Hypotheses
Ref Expression
issubrg.b  |-  B  =  ( Base `  R
)
issubrg.i  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
issubrg  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )

Proof of Theorem issubrg
Dummy variables  s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrg 13526 . . 3  |- SubRing  =  ( r  e.  Ring  |->  { s  e.  ~P ( Base `  r )  |  ( ( rs  s )  e. 
Ring  /\  ( 1r `  r )  e.  s ) } )
21mptrcl 5613 . 2  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
3 simpll 527 . 2  |-  ( ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) )  ->  R  e.  Ring )
4 fveq2 5529 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
5 issubrg.b . . . . . . . 8  |-  B  =  ( Base `  R
)
64, 5eqtr4di 2239 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  B )
76pweqd 3594 . . . . . 6  |-  ( r  =  R  ->  ~P ( Base `  r )  =  ~P B )
8 oveq1 5897 . . . . . . . 8  |-  ( r  =  R  ->  (
rs  s )  =  ( Rs  s ) )
98eleq1d 2257 . . . . . . 7  |-  ( r  =  R  ->  (
( rs  s )  e. 
Ring 
<->  ( Rs  s )  e. 
Ring ) )
10 fveq2 5529 . . . . . . . . 9  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
11 issubrg.i . . . . . . . . 9  |-  .1.  =  ( 1r `  R )
1210, 11eqtr4di 2239 . . . . . . . 8  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
1312eleq1d 2257 . . . . . . 7  |-  ( r  =  R  ->  (
( 1r `  r
)  e.  s  <->  .1.  e.  s ) )
149, 13anbi12d 473 . . . . . 6  |-  ( r  =  R  ->  (
( ( rs  s )  e.  Ring  /\  ( 1r `  r )  e.  s )  <->  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) ) )
157, 14rabeqbidv 2746 . . . . 5  |-  ( r  =  R  ->  { s  e.  ~P ( Base `  r )  |  ( ( rs  s )  e. 
Ring  /\  ( 1r `  r )  e.  s ) }  =  {
s  e.  ~P B  |  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } )
16 id 19 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Ring )
17 basfn 12537 . . . . . . . . 9  |-  Base  Fn  _V
18 elex 2762 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
_V )
19 funfvex 5546 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2019funfni 5330 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2117, 18, 20sylancr 414 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
225, 21eqeltrid 2275 . . . . . . 7  |-  ( R  e.  Ring  ->  B  e. 
_V )
2322pwexd 4195 . . . . . 6  |-  ( R  e.  Ring  ->  ~P B  e.  _V )
24 rabexg 4160 . . . . . 6  |-  ( ~P B  e.  _V  ->  { s  e.  ~P B  |  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) }  e.  _V )
2523, 24syl 14 . . . . 5  |-  ( R  e.  Ring  ->  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) }  e.  _V )
261, 15, 16, 25fvmptd3 5624 . . . 4  |-  ( R  e.  Ring  ->  (SubRing `  R
)  =  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } )
2726eleq2d 2258 . . 3  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  A  e.  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } ) )
28 oveq2 5898 . . . . . . . 8  |-  ( s  =  A  ->  ( Rs  s )  =  ( Rs  A ) )
2928eleq1d 2257 . . . . . . 7  |-  ( s  =  A  ->  (
( Rs  s )  e. 
Ring 
<->  ( Rs  A )  e.  Ring ) )
30 eleq2 2252 . . . . . . 7  |-  ( s  =  A  ->  (  .1.  e.  s  <->  .1.  e.  A ) )
3129, 30anbi12d 473 . . . . . 6  |-  ( s  =  A  ->  (
( ( Rs  s )  e.  Ring  /\  .1.  e.  s )  <->  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
3231elrab 2907 . . . . 5  |-  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( A  e.  ~P B  /\  (
( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
3332a1i 9 . . . 4  |-  ( R  e.  Ring  ->  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( A  e.  ~P B  /\  (
( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) ) )
34 elpw2g 4170 . . . . . 6  |-  ( B  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
3522, 34syl 14 . . . . 5  |-  ( R  e.  Ring  ->  ( A  e.  ~P B  <->  A  C_  B
) )
3635anbi1d 465 . . . 4  |-  ( R  e.  Ring  ->  ( ( A  e.  ~P B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) ) )
37 an12 561 . . . . 5  |-  ( ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) )
3837a1i 9 . . . 4  |-  ( R  e.  Ring  ->  ( ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) ) )
3933, 36, 383bitrd 214 . . 3  |-  ( R  e.  Ring  ->  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) ) )
40 ibar 301 . . . 4  |-  ( R  e.  Ring  ->  ( ( Rs  A )  e.  Ring  <->  ( R  e.  Ring  /\  ( Rs  A )  e.  Ring ) ) )
4140anbi1d 465 . . 3  |-  ( R  e.  Ring  ->  ( ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) )  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
4227, 39, 413bitrd 214 . 2  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
432, 3, 42pm5.21nii 705 1  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2159   {crab 2471   _Vcvv 2751    C_ wss 3143   ~Pcpw 3589    Fn wfn 5225   ` cfv 5230  (class class class)co 5890   Basecbs 12479   ↾s cress 12480   1rcur 13273   Ringcrg 13310  SubRingcsubrg 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-cnex 7919  ax-resscn 7920  ax-1re 7922  ax-addrcl 7925
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-fv 5238  df-ov 5893  df-inn 8937  df-ndx 12482  df-slot 12483  df-base 12485  df-subrg 13526
This theorem is referenced by:  subrgss  13529  subrgid  13530  subrgring  13531  subrgrcl  13533  subrg1cl  13536  issubrg2  13548  subsubrg  13552  subrgpropd  13555
  Copyright terms: Public domain W3C validator