| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubrg | Unicode version | ||
| Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.) |
| Ref | Expression |
|---|---|
| issubrg.b |
|
| issubrg.i |
|
| Ref | Expression |
|---|---|
| issubrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-subrg 13775 |
. . 3
| |
| 2 | 1 | mptrcl 5644 |
. 2
|
| 3 | simpll 527 |
. 2
| |
| 4 | fveq2 5558 |
. . . . . . . 8
| |
| 5 | issubrg.b |
. . . . . . . 8
| |
| 6 | 4, 5 | eqtr4di 2247 |
. . . . . . 7
|
| 7 | 6 | pweqd 3610 |
. . . . . 6
|
| 8 | oveq1 5929 |
. . . . . . . 8
| |
| 9 | 8 | eleq1d 2265 |
. . . . . . 7
|
| 10 | fveq2 5558 |
. . . . . . . . 9
| |
| 11 | issubrg.i |
. . . . . . . . 9
| |
| 12 | 10, 11 | eqtr4di 2247 |
. . . . . . . 8
|
| 13 | 12 | eleq1d 2265 |
. . . . . . 7
|
| 14 | 9, 13 | anbi12d 473 |
. . . . . 6
|
| 15 | 7, 14 | rabeqbidv 2758 |
. . . . 5
|
| 16 | id 19 |
. . . . 5
| |
| 17 | basfn 12736 |
. . . . . . . . 9
| |
| 18 | elex 2774 |
. . . . . . . . 9
| |
| 19 | funfvex 5575 |
. . . . . . . . . 10
| |
| 20 | 19 | funfni 5358 |
. . . . . . . . 9
|
| 21 | 17, 18, 20 | sylancr 414 |
. . . . . . . 8
|
| 22 | 5, 21 | eqeltrid 2283 |
. . . . . . 7
|
| 23 | 22 | pwexd 4214 |
. . . . . 6
|
| 24 | rabexg 4176 |
. . . . . 6
| |
| 25 | 23, 24 | syl 14 |
. . . . 5
|
| 26 | 1, 15, 16, 25 | fvmptd3 5655 |
. . . 4
|
| 27 | 26 | eleq2d 2266 |
. . 3
|
| 28 | oveq2 5930 |
. . . . . . . 8
| |
| 29 | 28 | eleq1d 2265 |
. . . . . . 7
|
| 30 | eleq2 2260 |
. . . . . . 7
| |
| 31 | 29, 30 | anbi12d 473 |
. . . . . 6
|
| 32 | 31 | elrab 2920 |
. . . . 5
|
| 33 | 32 | a1i 9 |
. . . 4
|
| 34 | elpw2g 4189 |
. . . . . 6
| |
| 35 | 22, 34 | syl 14 |
. . . . 5
|
| 36 | 35 | anbi1d 465 |
. . . 4
|
| 37 | an12 561 |
. . . . 5
| |
| 38 | 37 | a1i 9 |
. . . 4
|
| 39 | 33, 36, 38 | 3bitrd 214 |
. . 3
|
| 40 | ibar 301 |
. . . 4
| |
| 41 | 40 | anbi1d 465 |
. . 3
|
| 42 | 27, 39, 41 | 3bitrd 214 |
. 2
|
| 43 | 2, 3, 42 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-subrg 13775 |
| This theorem is referenced by: subrgss 13778 subrgid 13779 subrgring 13780 subrgrcl 13782 subrg1cl 13785 issubrg2 13797 subsubrg 13801 subrgpropd 13809 |
| Copyright terms: Public domain | W3C validator |