ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ushgrm Unicode version

Definition df-ushgrm 15878
Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function  e is an injective (one-to-one) function into subsets of the set of vertices  v, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by Jim Kingdon, 31-Dec-2025.)
Assertion
Ref Expression
df-ushgrm  |- USHGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
s  e.  ~P v  |  E. j  j  e.  s } }
Distinct variable group:    e, g, j, s, v

Detailed syntax breakdown of Definition df-ushgrm
StepHypRef Expression
1 cushgr 15876 . 2  class USHGraph
2 ve . . . . . . . 8  setvar  e
32cv 1394 . . . . . . 7  class  e
43cdm 4719 . . . . . 6  class  dom  e
5 vj . . . . . . . . 9  setvar  j
6 vs . . . . . . . . 9  setvar  s
75, 6wel 2201 . . . . . . . 8  wff  j  e.  s
87, 5wex 1538 . . . . . . 7  wff  E. j 
j  e.  s
9 vv . . . . . . . . 9  setvar  v
109cv 1394 . . . . . . . 8  class  v
1110cpw 3649 . . . . . . 7  class  ~P v
128, 6, 11crab 2512 . . . . . 6  class  { s  e.  ~P v  |  E. j  j  e.  s }
134, 12, 3wf1 5315 . . . . 5  wff  e : dom  e -1-1-> { s  e.  ~P v  |  E. j  j  e.  s }
14 vg . . . . . . 7  setvar  g
1514cv 1394 . . . . . 6  class  g
16 ciedg 15822 . . . . . 6  class iEdg
1715, 16cfv 5318 . . . . 5  class  (iEdg `  g )
1813, 2, 17wsbc 3028 . . . 4  wff  [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j 
j  e.  s }
19 cvtx 15821 . . . . 5  class Vtx
2015, 19cfv 5318 . . . 4  class  (Vtx `  g )
2118, 9, 20wsbc 3028 . . 3  wff  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
s  e.  ~P v  |  E. j  j  e.  s }
2221, 14cab 2215 . 2  class  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
s  e.  ~P v  |  E. j  j  e.  s } }
231, 22wceq 1395 1  wff USHGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
s  e.  ~P v  |  E. j  j  e.  s } }
Colors of variables: wff set class
This definition is referenced by:  isushgrm  15880
  Copyright terms: Public domain W3C validator