| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isushgrm | Unicode version | ||
| Description: The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| Ref | Expression |
|---|---|
| isuhgr.v |
|
| isuhgr.e |
|
| Ref | Expression |
|---|---|
| isushgrm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ushgrm 15835 |
. . 3
| |
| 2 | 1 | eleq2i 2276 |
. 2
|
| 3 | fveq2 5603 |
. . . . 5
| |
| 4 | isuhgr.e |
. . . . 5
| |
| 5 | 3, 4 | eqtr4di 2260 |
. . . 4
|
| 6 | 3 | dmeqd 4902 |
. . . . 5
|
| 7 | 4 | eqcomi 2213 |
. . . . . 6
|
| 8 | 7 | dmeqi 4901 |
. . . . 5
|
| 9 | 6, 8 | eqtrdi 2258 |
. . . 4
|
| 10 | fveq2 5603 |
. . . . . . 7
| |
| 11 | isuhgr.v |
. . . . . . 7
| |
| 12 | 10, 11 | eqtr4di 2260 |
. . . . . 6
|
| 13 | 12 | pweqd 3634 |
. . . . 5
|
| 14 | 13 | rabeqdv 2773 |
. . . 4
|
| 15 | 5, 9, 14 | f1eq123d 5540 |
. . 3
|
| 16 | vtxex 15784 |
. . . . . . 7
| |
| 17 | 16 | elv 2783 |
. . . . . 6
|
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | fveq2 5603 |
. . . . 5
| |
| 20 | iedgex 15785 |
. . . . . . . 8
| |
| 21 | 20 | elv 2783 |
. . . . . . 7
|
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | fveq2 5603 |
. . . . . . 7
| |
| 24 | 23 | adantr 276 |
. . . . . 6
|
| 25 | simpr 110 |
. . . . . . 7
| |
| 26 | 25 | dmeqd 4902 |
. . . . . . 7
|
| 27 | simpr 110 |
. . . . . . . . . 10
| |
| 28 | 27 | pweqd 3634 |
. . . . . . . . 9
|
| 29 | 28 | rabeqdv 2773 |
. . . . . . . 8
|
| 30 | 29 | adantr 276 |
. . . . . . 7
|
| 31 | 25, 26, 30 | f1eq123d 5540 |
. . . . . 6
|
| 32 | 22, 24, 31 | sbcied2 3046 |
. . . . 5
|
| 33 | 18, 19, 32 | sbcied2 3046 |
. . . 4
|
| 34 | 33 | cbvabv 2334 |
. . 3
|
| 35 | 15, 34 | elab2g 2930 |
. 2
|
| 36 | 2, 35 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 df-ndx 13001 df-slot 13002 df-base 13004 df-edgf 15771 df-vtx 15780 df-iedg 15781 df-ushgrm 15835 |
| This theorem is referenced by: ushgrfm 15839 uspgrushgr 15943 |
| Copyright terms: Public domain | W3C validator |