ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isushgrm Unicode version

Theorem isushgrm 15837
Description: The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
isuhgr.v  |-  V  =  (Vtx `  G )
isuhgr.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
isushgrm  |-  ( G  e.  U  ->  ( G  e. USHGraph  <->  E : dom  E -1-1-> { s  e.  ~P V  |  E. j  j  e.  s } ) )
Distinct variable groups:    j, s    V, s
Allowed substitution hints:    U( j, s)    E( j, s)    G( j, s)    V( j)

Proof of Theorem isushgrm
Dummy variables  g  h  v  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ushgrm 15835 . . 3  |- USHGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
s  e.  ~P v  |  E. j  j  e.  s } }
21eleq2i 2276 . 2  |-  ( G  e. USHGraph 
<->  G  e.  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
s  e.  ~P v  |  E. j  j  e.  s } } )
3 fveq2 5603 . . . . 5  |-  ( h  =  G  ->  (iEdg `  h )  =  (iEdg `  G ) )
4 isuhgr.e . . . . 5  |-  E  =  (iEdg `  G )
53, 4eqtr4di 2260 . . . 4  |-  ( h  =  G  ->  (iEdg `  h )  =  E )
63dmeqd 4902 . . . . 5  |-  ( h  =  G  ->  dom  (iEdg `  h )  =  dom  (iEdg `  G
) )
74eqcomi 2213 . . . . . 6  |-  (iEdg `  G )  =  E
87dmeqi 4901 . . . . 5  |-  dom  (iEdg `  G )  =  dom  E
96, 8eqtrdi 2258 . . . 4  |-  ( h  =  G  ->  dom  (iEdg `  h )  =  dom  E )
10 fveq2 5603 . . . . . . 7  |-  ( h  =  G  ->  (Vtx `  h )  =  (Vtx
`  G ) )
11 isuhgr.v . . . . . . 7  |-  V  =  (Vtx `  G )
1210, 11eqtr4di 2260 . . . . . 6  |-  ( h  =  G  ->  (Vtx `  h )  =  V )
1312pweqd 3634 . . . . 5  |-  ( h  =  G  ->  ~P (Vtx `  h )  =  ~P V )
1413rabeqdv 2773 . . . 4  |-  ( h  =  G  ->  { s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s }  =  { s  e.  ~P V  |  E. j  j  e.  s } )
155, 9, 14f1eq123d 5540 . . 3  |-  ( h  =  G  ->  (
(iEdg `  h ) : dom  (iEdg `  h
) -1-1-> { s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s }  <->  E : dom  E -1-1-> { s  e.  ~P V  |  E. j 
j  e.  s } ) )
16 vtxex 15784 . . . . . . 7  |-  ( g  e.  _V  ->  (Vtx `  g )  e.  _V )
1716elv 2783 . . . . . 6  |-  (Vtx `  g )  e.  _V
1817a1i 9 . . . . 5  |-  ( g  =  h  ->  (Vtx `  g )  e.  _V )
19 fveq2 5603 . . . . 5  |-  ( g  =  h  ->  (Vtx `  g )  =  (Vtx
`  h ) )
20 iedgex 15785 . . . . . . . 8  |-  ( g  e.  _V  ->  (iEdg `  g )  e.  _V )
2120elv 2783 . . . . . . 7  |-  (iEdg `  g )  e.  _V
2221a1i 9 . . . . . 6  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  (iEdg `  g )  e.  _V )
23 fveq2 5603 . . . . . . 7  |-  ( g  =  h  ->  (iEdg `  g )  =  (iEdg `  h ) )
2423adantr 276 . . . . . 6  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  (iEdg `  g )  =  (iEdg `  h ) )
25 simpr 110 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  -> 
e  =  (iEdg `  h ) )
2625dmeqd 4902 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  ->  dom  e  =  dom  (iEdg `  h ) )
27 simpr 110 . . . . . . . . . 10  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  v  =  (Vtx `  h )
)
2827pweqd 3634 . . . . . . . . 9  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  ~P v  =  ~P (Vtx `  h ) )
2928rabeqdv 2773 . . . . . . . 8  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  { s  e.  ~P v  |  E. j  j  e.  s }  =  {
s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s } )
3029adantr 276 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  ->  { s  e.  ~P v  |  E. j 
j  e.  s }  =  { s  e. 
~P (Vtx `  h
)  |  E. j 
j  e.  s } )
3125, 26, 30f1eq123d 5540 . . . . . 6  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  -> 
( e : dom  e -1-1-> { s  e.  ~P v  |  E. j 
j  e.  s }  <-> 
(iEdg `  h ) : dom  (iEdg `  h
) -1-1-> { s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s } ) )
3222, 24, 31sbcied2 3046 . . . . 5  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  ( [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j  j  e.  s }  <->  (iEdg `  h
) : dom  (iEdg `  h ) -1-1-> { s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s } ) )
3318, 19, 32sbcied2 3046 . . . 4  |-  ( g  =  h  ->  ( [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j 
j  e.  s }  <-> 
(iEdg `  h ) : dom  (iEdg `  h
) -1-1-> { s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s } ) )
3433cbvabv 2334 . . 3  |-  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
s  e.  ~P v  |  E. j  j  e.  s } }  =  { h  |  (iEdg `  h ) : dom  (iEdg `  h ) -1-1-> {
s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s } }
3515, 34elab2g 2930 . 2  |-  ( G  e.  U  ->  ( G  e.  { g  |  [. (Vtx `  g
)  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j  j  e.  s } }  <->  E : dom  E -1-1-> { s  e.  ~P V  |  E. j 
j  e.  s } ) )
362, 35bitrid 192 1  |-  ( G  e.  U  ->  ( G  e. USHGraph  <->  E : dom  E -1-1-> { s  e.  ~P V  |  E. j  j  e.  s } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375   E.wex 1518    e. wcel 2180   {cab 2195   {crab 2492   _Vcvv 2779   [.wsbc 3008   ~Pcpw 3629   dom cdm 4696   -1-1->wf1 5291   ` cfv 5294  Vtxcvtx 15778  iEdgciedg 15779  USHGraphcushgr 15833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-ushgrm 15835
This theorem is referenced by:  ushgrfm  15839  uspgrushgr  15943
  Copyright terms: Public domain W3C validator