ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isushgrm Unicode version

Theorem isushgrm 15880
Description: The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
isuhgr.v  |-  V  =  (Vtx `  G )
isuhgr.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
isushgrm  |-  ( G  e.  U  ->  ( G  e. USHGraph  <->  E : dom  E -1-1-> { s  e.  ~P V  |  E. j  j  e.  s } ) )
Distinct variable groups:    j, s    V, s
Allowed substitution hints:    U( j, s)    E( j, s)    G( j, s)    V( j)

Proof of Theorem isushgrm
Dummy variables  g  h  v  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ushgrm 15878 . . 3  |- USHGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
s  e.  ~P v  |  E. j  j  e.  s } }
21eleq2i 2296 . 2  |-  ( G  e. USHGraph 
<->  G  e.  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
s  e.  ~P v  |  E. j  j  e.  s } } )
3 fveq2 5629 . . . . 5  |-  ( h  =  G  ->  (iEdg `  h )  =  (iEdg `  G ) )
4 isuhgr.e . . . . 5  |-  E  =  (iEdg `  G )
53, 4eqtr4di 2280 . . . 4  |-  ( h  =  G  ->  (iEdg `  h )  =  E )
63dmeqd 4925 . . . . 5  |-  ( h  =  G  ->  dom  (iEdg `  h )  =  dom  (iEdg `  G
) )
74eqcomi 2233 . . . . . 6  |-  (iEdg `  G )  =  E
87dmeqi 4924 . . . . 5  |-  dom  (iEdg `  G )  =  dom  E
96, 8eqtrdi 2278 . . . 4  |-  ( h  =  G  ->  dom  (iEdg `  h )  =  dom  E )
10 fveq2 5629 . . . . . . 7  |-  ( h  =  G  ->  (Vtx `  h )  =  (Vtx
`  G ) )
11 isuhgr.v . . . . . . 7  |-  V  =  (Vtx `  G )
1210, 11eqtr4di 2280 . . . . . 6  |-  ( h  =  G  ->  (Vtx `  h )  =  V )
1312pweqd 3654 . . . . 5  |-  ( h  =  G  ->  ~P (Vtx `  h )  =  ~P V )
1413rabeqdv 2793 . . . 4  |-  ( h  =  G  ->  { s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s }  =  { s  e.  ~P V  |  E. j  j  e.  s } )
155, 9, 14f1eq123d 5566 . . 3  |-  ( h  =  G  ->  (
(iEdg `  h ) : dom  (iEdg `  h
) -1-1-> { s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s }  <->  E : dom  E -1-1-> { s  e.  ~P V  |  E. j 
j  e.  s } ) )
16 vtxex 15827 . . . . . . 7  |-  ( g  e.  _V  ->  (Vtx `  g )  e.  _V )
1716elv 2803 . . . . . 6  |-  (Vtx `  g )  e.  _V
1817a1i 9 . . . . 5  |-  ( g  =  h  ->  (Vtx `  g )  e.  _V )
19 fveq2 5629 . . . . 5  |-  ( g  =  h  ->  (Vtx `  g )  =  (Vtx
`  h ) )
20 iedgex 15828 . . . . . . . 8  |-  ( g  e.  _V  ->  (iEdg `  g )  e.  _V )
2120elv 2803 . . . . . . 7  |-  (iEdg `  g )  e.  _V
2221a1i 9 . . . . . 6  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  (iEdg `  g )  e.  _V )
23 fveq2 5629 . . . . . . 7  |-  ( g  =  h  ->  (iEdg `  g )  =  (iEdg `  h ) )
2423adantr 276 . . . . . 6  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  (iEdg `  g )  =  (iEdg `  h ) )
25 simpr 110 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  -> 
e  =  (iEdg `  h ) )
2625dmeqd 4925 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  ->  dom  e  =  dom  (iEdg `  h ) )
27 simpr 110 . . . . . . . . . 10  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  v  =  (Vtx `  h )
)
2827pweqd 3654 . . . . . . . . 9  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  ~P v  =  ~P (Vtx `  h ) )
2928rabeqdv 2793 . . . . . . . 8  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  { s  e.  ~P v  |  E. j  j  e.  s }  =  {
s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s } )
3029adantr 276 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  ->  { s  e.  ~P v  |  E. j 
j  e.  s }  =  { s  e. 
~P (Vtx `  h
)  |  E. j 
j  e.  s } )
3125, 26, 30f1eq123d 5566 . . . . . 6  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  -> 
( e : dom  e -1-1-> { s  e.  ~P v  |  E. j 
j  e.  s }  <-> 
(iEdg `  h ) : dom  (iEdg `  h
) -1-1-> { s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s } ) )
3222, 24, 31sbcied2 3066 . . . . 5  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  ( [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j  j  e.  s }  <->  (iEdg `  h
) : dom  (iEdg `  h ) -1-1-> { s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s } ) )
3318, 19, 32sbcied2 3066 . . . 4  |-  ( g  =  h  ->  ( [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j 
j  e.  s }  <-> 
(iEdg `  h ) : dom  (iEdg `  h
) -1-1-> { s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s } ) )
3433cbvabv 2354 . . 3  |-  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
s  e.  ~P v  |  E. j  j  e.  s } }  =  { h  |  (iEdg `  h ) : dom  (iEdg `  h ) -1-1-> {
s  e.  ~P (Vtx `  h )  |  E. j  j  e.  s } }
3515, 34elab2g 2950 . 2  |-  ( G  e.  U  ->  ( G  e.  { g  |  [. (Vtx `  g
)  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j  j  e.  s } }  <->  E : dom  E -1-1-> { s  e.  ~P V  |  E. j 
j  e.  s } ) )
362, 35bitrid 192 1  |-  ( G  e.  U  ->  ( G  e. USHGraph  <->  E : dom  E -1-1-> { s  e.  ~P V  |  E. j  j  e.  s } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   {crab 2512   _Vcvv 2799   [.wsbc 3028   ~Pcpw 3649   dom cdm 4719   -1-1->wf1 5315   ` cfv 5318  Vtxcvtx 15821  iEdgciedg 15822  USHGraphcushgr 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-ushgrm 15878
This theorem is referenced by:  ushgrfm  15882  uspgrushgr  15986
  Copyright terms: Public domain W3C validator