| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isushgrm | Unicode version | ||
| Description: The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| Ref | Expression |
|---|---|
| isuhgr.v |
|
| isuhgr.e |
|
| Ref | Expression |
|---|---|
| isushgrm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ushgrm 15710 |
. . 3
| |
| 2 | 1 | eleq2i 2273 |
. 2
|
| 3 | fveq2 5583 |
. . . . 5
| |
| 4 | isuhgr.e |
. . . . 5
| |
| 5 | 3, 4 | eqtr4di 2257 |
. . . 4
|
| 6 | 3 | dmeqd 4885 |
. . . . 5
|
| 7 | 4 | eqcomi 2210 |
. . . . . 6
|
| 8 | 7 | dmeqi 4884 |
. . . . 5
|
| 9 | 6, 8 | eqtrdi 2255 |
. . . 4
|
| 10 | fveq2 5583 |
. . . . . . 7
| |
| 11 | isuhgr.v |
. . . . . . 7
| |
| 12 | 10, 11 | eqtr4di 2257 |
. . . . . 6
|
| 13 | 12 | pweqd 3622 |
. . . . 5
|
| 14 | 13 | rabeqdv 2767 |
. . . 4
|
| 15 | 5, 9, 14 | f1eq123d 5521 |
. . 3
|
| 16 | vtxex 15661 |
. . . . . . 7
| |
| 17 | 16 | elv 2777 |
. . . . . 6
|
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | fveq2 5583 |
. . . . 5
| |
| 20 | iedgex 15662 |
. . . . . . . 8
| |
| 21 | 20 | elv 2777 |
. . . . . . 7
|
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | fveq2 5583 |
. . . . . . 7
| |
| 24 | 23 | adantr 276 |
. . . . . 6
|
| 25 | simpr 110 |
. . . . . . 7
| |
| 26 | 25 | dmeqd 4885 |
. . . . . . 7
|
| 27 | simpr 110 |
. . . . . . . . . 10
| |
| 28 | 27 | pweqd 3622 |
. . . . . . . . 9
|
| 29 | 28 | rabeqdv 2767 |
. . . . . . . 8
|
| 30 | 29 | adantr 276 |
. . . . . . 7
|
| 31 | 25, 26, 30 | f1eq123d 5521 |
. . . . . 6
|
| 32 | 22, 24, 31 | sbcied2 3037 |
. . . . 5
|
| 33 | 18, 19, 32 | sbcied2 3037 |
. . . 4
|
| 34 | 33 | cbvabv 2331 |
. . 3
|
| 35 | 15, 34 | elab2g 2921 |
. 2
|
| 36 | 2, 35 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-sub 8252 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-dec 9512 df-ndx 12879 df-slot 12880 df-base 12882 df-edgf 15648 df-vtx 15657 df-iedg 15658 df-ushgrm 15710 |
| This theorem is referenced by: ushgrfm 15714 |
| Copyright terms: Public domain | W3C validator |