HomeHome Intuitionistic Logic Explorer
Theorem List (p. 159 of 159)
< Previous  Wrap >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15801-15841   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtrirec0 15801* Every real number having a reciprocal or equaling zero is equivalent to real number trichotomy.

This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 15800). (Contributed by Jim Kingdon, 10-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
 )  =  1  \/  x  =  0 ) )
 
Theoremtrirec0xor 15802* Version of trirec0 15801 with exclusive-or.

The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
 )  =  1  \/_  x  =  0 )
 )
 
Theoremapdifflemf 15803 Lemma for apdiff 15805. Being apart from the point halfway between  Q and  R suffices for  A to be a different distance from  Q and from  R. (Contributed by Jim Kingdon, 18-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  Q  e.  QQ )   &    |-  ( ph  ->  R  e.  QQ )   &    |-  ( ph  ->  Q  <  R )   &    |-  ( ph  ->  (
 ( Q  +  R )  /  2 ) #  A )   =>    |-  ( ph  ->  ( abs `  ( A  -  Q ) ) #  ( abs `  ( A  -  R ) ) )
 
Theoremapdifflemr 15804 Lemma for apdiff 15805. (Contributed by Jim Kingdon, 19-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  S  e.  QQ )   &    |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )   &    |-  ( ( ph  /\  S  =/=  0 ) 
 ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )   =>    |-  ( ph  ->  A #  S )
 
Theoremapdiff 15805* The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.)
 |-  ( A  e.  RR  ->  (
 A. q  e.  QQ  A #  q  <->  A. q  e.  QQ  A. r  e.  QQ  (
 q  =/=  r  ->  ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) ) ) ) )
 
Theoremiswomninnlem 15806* Lemma for iswomnimap 7241. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  1 ) )
 
Theoremiswomninn 15807* Weak omniscience stated in terms of natural numbers. Similar to iswomnimap 7241 but it will sometimes be more convenient to use  0 and  1 rather than  (/) and  1o. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  1 ) )
 
Theoremiswomni0 15808* Weak omniscience stated in terms of equality with  0. Like iswomninn 15807 but with zero in place of one. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  0 ) )
 
Theoremismkvnnlem 15809* Lemma for ismkvnn 15810. The result, with a hypothesis to give a name to an expression for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1  ->  E. x  e.  A  ( f `  x )  =  0 )
 ) )
 
Theoremismkvnn 15810* The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1  ->  E. x  e.  A  ( f `  x )  =  0 )
 ) )
 
Theoremredcwlpolemeq1 15811* Lemma for redcwlpo 15812. A biconditionalized version of trilpolemeq1 15797. (Contributed by Jim Kingdon, 21-Jun-2024.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   =>    |-  ( ph  ->  ( A  =  1  <->  A. x  e.  NN  ( F `  x )  =  1 ) )
 
Theoremredcwlpo 15812* Decidability of real number equality implies the Weak Limited Principle of Omniscience (WLPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 15811). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones.

Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO".

WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10353 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  ->  om  e. WOmni )
 
Theoremtridceq 15813* Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 15800 and redcwlpo 15812). Thus, this is an analytic analogue to lpowlpo 7243. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  ->  A. x  e.  RR  A. y  e. 
 RR DECID  x  =  y )
 
Theoremredc0 15814* Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y 
 <-> 
 A. z  e.  RR DECID  z  =  0 )
 
Theoremreap0 15815* Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. z  e.  RR DECID  z #  0 )
 
Theoremcndcap 15816* Real number trichotomy is equivalent to decidability of complex number apartness. (Contributed by Jim Kingdon, 10-Apr-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. z  e.  CC  A. w  e.  CC DECID  z #  w )
 
Theoremdceqnconst 15817* Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 15812 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.)
 |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f
 ( f : RR --> ZZ  /\  ( f `  0 )  =  0  /\  A. x  e.  RR+  ( f `  x )  =/=  0 ) )
 
Theoremdcapnconst 15818* Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 15800 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 15817 and in fact this theorem can be proved using dceqnconst 15817 as shown at dcapnconstALT 15819. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

 |-  ( A. x  e.  RR DECID  x #  0 
 ->  E. f ( f : RR --> ZZ  /\  ( f `  0
 )  =  0  /\  A. x  e.  RR+  ( f `
  x )  =/=  0 ) )
 
TheoremdcapnconstALT 15819* Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 15818 by means of dceqnconst 15817. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( A. x  e.  RR DECID  x #  0 
 ->  E. f ( f : RR --> ZZ  /\  ( f `  0
 )  =  0  /\  A. x  e.  RR+  ( f `
  x )  =/=  0 ) )
 
Theoremnconstwlpolem0 15820* Lemma for nconstwlpo 15823. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
 |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )   &    |-  ( ph  ->  A. x  e.  NN  ( G `  x )  =  0 )   =>    |-  ( ph  ->  A  =  0 )
 
Theoremnconstwlpolemgt0 15821* Lemma for nconstwlpo 15823. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
 |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )   &    |-  ( ph  ->  E. x  e.  NN  ( G `  x )  =  1 )   =>    |-  ( ph  ->  0  <  A )
 
Theoremnconstwlpolem 15822* Lemma for nconstwlpo 15823. (Contributed by Jim Kingdon, 23-Jul-2024.)
 |-  ( ph  ->  F : RR --> ZZ )   &    |-  ( ph  ->  ( F `  0 )  =  0 )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  ( F `
  x )  =/=  0 )   &    |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i
 ) )  x.  ( G `  i ) )   =>    |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
 
Theoremnconstwlpo 15823* Existence of a certain non-constant function from reals to integers implies  om  e. WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.)
 |-  ( ph  ->  F : RR --> ZZ )   &    |-  ( ph  ->  ( F `  0 )  =  0 )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  ( F `
  x )  =/=  0 )   =>    |-  ( ph  ->  om  e. WOmni )
 
Theoremneapmkvlem 15824* Lemma for neapmkv 15825. The result, with a few hypotheses broken out for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  (
 ( ph  /\  A  =/=  1 )  ->  A #  1
 )   =>    |-  ( ph  ->  ( -.  A. x  e.  NN  ( F `  x )  =  1  ->  E. x  e.  NN  ( F `  x )  =  0
 ) )
 
Theoremneapmkv 15825* If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y )  ->  om  e. Markov )
 
Theoremneap0mkv 15826* The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y )  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
 
Theoremltlenmkv 15827* If  < can be expressed as holding exactly when 
<_ holds and the values are not equal, then the analytic Markov's Principle applies. (To get the regular Markov's Principle, combine with neapmkv 15825). (Contributed by Jim Kingdon, 23-Feb-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  <->  ( x  <_  y  /\  y  =/=  x ) )  ->  A. x  e.  RR  A. y  e. 
 RR  ( x  =/=  y  ->  x #  y
 ) )
 
13.3.8  Supremum and infimum
 
Theoremsupfz 15828 The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
 |-  ( N  e.  ( ZZ>= `  M )  ->  sup (
 ( M ... N ) ,  ZZ ,  <  )  =  N )
 
Theoreminffz 15829 The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
 |-  ( N  e.  ( ZZ>= `  M )  -> inf ( ( M ... N ) ,  ZZ ,  <  )  =  M )
 
13.3.9  Circle constant
 
Theoremtaupi 15830 Relationship between  tau and  pi. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
 |-  tau  =  ( 2  x.  pi )
 
13.4  Mathbox for Mykola Mostovenko
 
Theoremax1hfs 15831 Heyting's formal system Axiom #1 from [Heyting] p. 127. (Contributed by MM, 11-Aug-2018.)
 |-  ( ph  ->  ( ph  /\  ph )
 )
 
13.5  Mathbox for David A. Wheeler
 
13.5.1  Testable propositions
 
Theoremdftest 15832 A proposition is testable iff its negative or double-negative is true. See Chapter 2 [Moschovakis] p. 2.

We do not formally define testability with a new token, but instead use DECID  -. before the formula in question. For example, DECID  -.  x  =  y corresponds to " x  =  y is testable". (Contributed by David A. Wheeler, 13-Aug-2018.) For statements about testable propositions, search for the keyword "testable" in the comments of statements, for instance using the Metamath command "MM> SEARCH * "testable" / COMMENTS". (New usage is discouraged.)

 |-  (DECID  -.  ph  <->  ( -.  ph  \/  -.  -.  ph ) )
 
13.5.2  Allsome quantifier

These are definitions and proofs involving an experimental "allsome" quantifier (aka "all some").

In informal language, statements like "All Martians are green" imply that there is at least one Martian. But it's easy to mistranslate informal language into formal notations because similar statements like  A. x ph  ->  ps do not imply that  ph is ever true, leading to vacuous truths. Some systems include a mechanism to counter this, e.g., PVS allows types to be appended with "+" to declare that they are nonempty. This section presents a different solution to the same problem.

The "allsome" quantifier expressly includes the notion of both "all" and "there exists at least one" (aka some), and is defined to make it easier to more directly express both notions. The hope is that if a quantifier more directly expresses this concept, it will be used instead and reduce the risk of creating formal expressions that look okay but in fact are mistranslations. The term "allsome" was chosen because it's short, easy to say, and clearly hints at the two concepts it combines.

I do not expect this to be used much in metamath, because in metamath there's a general policy of avoiding the use of new definitions unless there are very strong reasons to do so. Instead, my goal is to rigorously define this quantifier and demonstrate a few basic properties of it.

The syntax allows two forms that look like they would be problematic, but they are fine. When applied to a top-level implication we allow  A.! x (
ph  ->  ps ), and when restricted (applied to a class) we allow  A.! x  e.  A ph. The first symbol after the setvar variable must always be  e. if it is the form applied to a class, and since  e. cannot begin a wff, it is unambiguous. The  -> looks like it would be a problem because  ph or  ps might include implications, but any implication arrow  -> within any wff must be surrounded by parentheses, so only the implication arrow of  A.! can follow the wff. The implication syntax would work fine without the parentheses, but I added the parentheses because it makes things clearer inside larger complex expressions, and it's also more consistent with the rest of the syntax.

For more, see "The Allsome Quantifier" by David A. Wheeler at https://dwheeler.com/essays/allsome.html I hope that others will eventually agree that allsome is awesome.

 
Syntaxwalsi 15833 Extend wff definition to include "all some" applied to a top-level implication, which means  ps is true whenever 
ph is true, and there is at least least one  x where  ph is true. (Contributed by David A. Wheeler, 20-Oct-2018.)
 wff  A.! x ( ph  ->  ps )
 
Syntaxwalsc 15834 Extend wff definition to include "all some" applied to a class, which means  ph is true for all  x in  A, and there is at least one  x in  A. (Contributed by David A. Wheeler, 20-Oct-2018.)
 wff  A.! x  e.  A ph
 
Definitiondf-alsi 15835 Define "all some" applied to a top-level implication, which means  ps is true whenever  ph is true and there is at least one  x where  ph is true. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( A.! x ( ph  ->  ps )  <->  ( A. x ( ph  ->  ps )  /\  E. x ph )
 )
 
Definitiondf-alsc 15836 Define "all some" applied to a class, which means  ph is true for all  x in  A and there is at least one  x in  A. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( A.! x  e.  A ph  <->  (
 A. x  e.  A  ph 
 /\  E. x  x  e.  A ) )
 
Theoremalsconv 15837 There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018.)
 |-  ( A.! x ( x  e.  A  ->  ph )  <->  A.! x  e.  A ph )
 
Theoremalsi1d 15838 Deduction rule: Given "all some" applied to a top-level inference, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( ph  ->  A.! x ( ps 
 ->  ch ) )   =>    |-  ( ph  ->  A. x ( ps  ->  ch ) )
 
Theoremalsi2d 15839 Deduction rule: Given "all some" applied to a top-level inference, you can extract the "exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( ph  ->  A.! x ( ps 
 ->  ch ) )   =>    |-  ( ph  ->  E. x ps )
 
Theoremalsc1d 15840 Deduction rule: Given "all some" applied to a class, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( ph  ->  A.! x  e.  A ps )   =>    |-  ( ph  ->  A. x  e.  A  ps )
 
Theoremalsc2d 15841 Deduction rule: Given "all some" applied to a class, you can extract the "there exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
 |-  ( ph  ->  A.! x  e.  A ps )   =>    |-  ( ph  ->  E. x  x  e.  A )
    < Previous  Wrap >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15841
  Copyright terms: Public domain < Previous  Wrap >