HomeHome Intuitionistic Logic Explorer
Theorem List (p. 159 of 164)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15801-15900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremedgfiedgval2dom 15801 The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.)
 |-  ( ph  ->  G Struct  X )   &    |-  ( ph  ->  2o  ~<_ 
 dom  G )   &    |-  ( ph  ->  E  e.  Y )   &    |-  ( ph  ->  <. (.ef `  ndx ) ,  E >.  e.  G )   =>    |-  ( ph  ->  (iEdg `  G )  =  E )
 
Theoremfunvtxvalg 15802 The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
 |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/) } )  /\  { ( Base `  ndx ) ,  (.ef `  ndx ) }  C_ 
 dom  G )  ->  (Vtx `  G )  =  (
 Base `  G ) )
 
Theoremfuniedgvalg 15803 The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
 |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/) } )  /\  { ( Base `  ndx ) ,  (.ef `  ndx ) }  C_ 
 dom  G )  ->  (iEdg `  G )  =  (.ef `  G ) )
 
Theoremstruct2slots2dom 15804 There are at least two elements in an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Revised by AV, 12-Nov-2021.)
 |-  S  e.  NN   &    |-  ( Base `  ndx )  <  S   &    |-  G  =  { <. (
 Base `  ndx ) ,  V >. ,  <. S ,  E >. }   =>    |-  ( ( V  e.  X  /\  E  e.  Y )  ->  2o  ~<_  dom  G )
 
Theoremstructvtxval 15805 The set of vertices of an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
 |-  S  e.  NN   &    |-  ( Base `  ndx )  <  S   &    |-  G  =  { <. (
 Base `  ndx ) ,  V >. ,  <. S ,  E >. }   =>    |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (Vtx `  G )  =  V )
 
Theoremstructiedg0val 15806 The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
 |-  S  e.  NN   &    |-  ( Base `  ndx )  <  S   &    |-  G  =  { <. (
 Base `  ndx ) ,  V >. ,  <. S ,  E >. }   =>    |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  (iEdg `  G )  =  (/) )
 
Theoremstructgr2slots2dom 15807 There are at least two elements in a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
 |-  ( ph  ->  G Struct  X )   &    |-  ( ph  ->  V  e.  Y )   &    |-  ( ph  ->  E  e.  Z )   &    |-  ( ph  ->  { <. (
 Base `  ndx ) ,  V >. ,  <. (.ef `  ndx ) ,  E >. } 
 C_  G )   =>    |-  ( ph  ->  2o  ~<_ 
 dom  G )
 
Theoremstructgrssvtx 15808 The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
 |-  ( ph  ->  G Struct  X )   &    |-  ( ph  ->  V  e.  Y )   &    |-  ( ph  ->  E  e.  Z )   &    |-  ( ph  ->  { <. (
 Base `  ndx ) ,  V >. ,  <. (.ef `  ndx ) ,  E >. } 
 C_  G )   =>    |-  ( ph  ->  (Vtx `  G )  =  V )
 
Theoremstructgrssiedg 15809 The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
 |-  ( ph  ->  G Struct  X )   &    |-  ( ph  ->  V  e.  Y )   &    |-  ( ph  ->  E  e.  Z )   &    |-  ( ph  ->  { <. (
 Base `  ndx ) ,  V >. ,  <. (.ef `  ndx ) ,  E >. } 
 C_  G )   =>    |-  ( ph  ->  (iEdg `  G )  =  E )
 
Theoremstruct2grstrg 15810 A graph represented as an extensible structure with vertices as base set and indexed edges is actually an extensible structure. (Contributed by AV, 23-Nov-2020.)
 |-  G  =  { <. (
 Base `  ndx ) ,  V >. ,  <. (.ef `  ndx ) ,  E >. }   =>    |-  ( ( V  e.  X  /\  E  e.  Y )  ->  G Struct  <. ( Base ` 
 ndx ) ,  (.ef ` 
 ndx ) >. )
 
Theoremstruct2grvtx 15811 The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.)
 |-  G  =  { <. (
 Base `  ndx ) ,  V >. ,  <. (.ef `  ndx ) ,  E >. }   =>    |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (Vtx `  G )  =  V )
 
Theoremstruct2griedg 15812 The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
 |-  G  =  { <. (
 Base `  ndx ) ,  V >. ,  <. (.ef `  ndx ) ,  E >. }   =>    |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (iEdg `  G )  =  E )
 
Theoremgropd 15813* If any representation of a graph with vertices  V and edges  E has a certain property  ps, then the ordered pair  <. V ,  E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices  V and edges  E) has this property. (Contributed by AV, 11-Oct-2020.)
 |-  ( ph  ->  A. g
 ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )
 )   &    |-  ( ph  ->  V  e.  U )   &    |-  ( ph  ->  E  e.  W )   =>    |-  ( ph  ->  [.
 <. V ,  E >.  /  g ]. ps )
 
Theoremgrstructd2dom 15814* If any representation of a graph with vertices  V and edges  E has a certain property  ps, then any structure with base set  V and value  E in the slot for edge functions (which is such a representation of a graph with vertices  V and edges  E) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.)
 |-  ( ph  ->  A. g
 ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )
 )   &    |-  ( ph  ->  V  e.  U )   &    |-  ( ph  ->  E  e.  W )   &    |-  ( ph  ->  S  e.  X )   &    |-  ( ph  ->  Fun  ( S  \  { (/) } )
 )   &    |-  ( ph  ->  2o  ~<_  dom  S )   &    |-  ( ph  ->  (
 Base `  S )  =  V )   &    |-  ( ph  ->  (.ef `  S )  =  E )   =>    |-  ( ph  ->  [. S  /  g ]. ps )
 
Theoremgropeld 15815* If any representation of a graph with vertices  V and edges  E is an element of an arbitrary class  C, then the ordered pair  <. V ,  E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices  V and edges  E) is an element of this class 
C. (Contributed by AV, 11-Oct-2020.)
 |-  ( ph  ->  A. g
 ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  g  e.  C ) )   &    |-  ( ph  ->  V  e.  U )   &    |-  ( ph  ->  E  e.  W )   =>    |-  ( ph  ->  <. V ,  E >.  e.  C )
 
Theoremgrstructeld2dom 15816* If any representation of a graph with vertices  V and edges  E is an element of an arbitrary class  C, then any structure with base set  V and value  E in the slot for edge functions (which is such a representation of a graph with vertices  V and edges  E) is an element of this class  C. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.)
 |-  ( ph  ->  A. g
 ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  g  e.  C ) )   &    |-  ( ph  ->  V  e.  U )   &    |-  ( ph  ->  E  e.  W )   &    |-  ( ph  ->  S  e.  X )   &    |-  ( ph  ->  Fun  ( S  \  { (/) } ) )   &    |-  ( ph  ->  2o  ~<_  dom  S )   &    |-  ( ph  ->  ( Base `  S )  =  V )   &    |-  ( ph  ->  (.ef `  S )  =  E )   =>    |-  ( ph  ->  S  e.  C )
 
Theoremsetsvtx 15817 The vertices of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 18-Jan-2020.) (Revised by AV, 16-Nov-2021.)
 |-  I  =  (.ef `  ndx )   &    |-  ( ph  ->  G Struct  X )   &    |-  ( ph  ->  (
 Base `  ndx )  e. 
 dom  G )   &    |-  ( ph  ->  E  e.  W )   =>    |-  ( ph  ->  (Vtx `  ( G sSet  <. I ,  E >. ) )  =  ( Base `  G )
 )
 
Theoremsetsiedg 15818 The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
 |-  I  =  (.ef `  ndx )   &    |-  ( ph  ->  G Struct  X )   &    |-  ( ph  ->  (
 Base `  ndx )  e. 
 dom  G )   &    |-  ( ph  ->  E  e.  W )   =>    |-  ( ph  ->  (iEdg `  ( G sSet  <. I ,  E >. ) )  =  E )
 
12.1.2.4  Degenerated cases of representations of graphs
 
Theoremvtxval0 15819 Degenerated case 1 for vertices: The set of vertices of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.)
 |-  (Vtx `  (/) )  =  (/)
 
Theoremiedgval0 15820 Degenerated case 1 for edges: The set of indexed edges of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.)
 |-  (iEdg `  (/) )  =  (/)
 
Theoremvtxvalprc 15821 Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
 |-  ( C  e/  _V  ->  (Vtx `  C )  =  (/) )
 
Theoremiedgvalprc 15822 Degenerated case 4 for edges: The set of indexed edges of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
 |-  ( C  e/  _V  ->  (iEdg `  C )  =  (/) )
 
12.1.3  Edges as range of the edge function
 
Syntaxcedg 15823 Extend class notation with the set of edges (of an undirected simple (hyper-/pseudo-)graph).
 class Edg
 
Definitiondf-edg 15824 Define the class of edges of a graph, see also definition "E = E(G)" in section I.1 of [Bollobas] p. 1. This definition is very general: It defines edges of a class as the range of its edge function (which does not even need to be a function). Therefore, this definition could also be used for hypergraphs, pseudographs and multigraphs. In these cases, however, the (possibly more than one) edges connecting the same vertices could not be distinguished anymore. In some cases, this is no problem, so theorems with Edg are meaningful nevertheless. Usually, however, this definition is used only for undirected simple (hyper-/pseudo-)graphs (with or without loops). (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.)
 |- Edg 
 =  ( g  e. 
 _V  |->  ran  (iEdg `  g
 ) )
 
Theoremedgvalg 15825 The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.)
 |-  ( G  e.  V  ->  (Edg `  G )  =  ran  (iEdg `  G ) )
 
Theoremiedgedgg 15826 An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.)
 |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e.  V  /\  Fun  E  /\  I  e.  dom  E ) 
 ->  ( E `  I
 )  e.  (Edg `  G ) )
 
Theoremedgopval 15827 The edges of a graph represented as ordered pair. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.)
 |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Edg `  <. V ,  E >. )  =  ran  E )
 
Theoremedgov 15828 The edges of a graph represented as ordered pair, shown as operation value. Although a little less intuitive, this representation is often used because it is shorter than the representation as function value of a graph given as ordered pair, see edgopval 15827. The representation  ran  E for the set of edges is even shorter, though. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 13-Oct-2020.)
 |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( VEdg E )  =  ran  E )
 
Theoremedgstruct 15829 The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.)
 |-  G  =  { <. (
 Base `  ndx ) ,  V >. ,  <. (.ef `  ndx ) ,  E >. }   =>    |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Edg `  G )  =  ran  E )
 
Theoremedgiedgbg 15830* A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.)
 |-  I  =  (iEdg `  G )   =>    |-  ( ( G  e.  V  /\  Fun  I )  ->  ( E  e.  (Edg `  G )  <->  E. x  e.  dom  I  E  =  ( I `
  x ) ) )
 
Theoremedg0iedg0g 15831 There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.)
 |-  I  =  (iEdg `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e.  V  /\  Fun  I )  ->  ( E  =  (/)  <->  I  =  (/) ) )
 
12.2  Undirected graphs
 
12.2.1  Undirected hypergraphs
 
Syntaxcuhgr 15832 Extend class notation with undirected hypergraphs.
 class UHGraph
 
Syntaxcushgr 15833 Extend class notation with undirected simple hypergraphs.
 class USHGraph
 
Definitiondf-uhgrm 15834* Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set 
v (of "vertices") and a function  e (representing indexed "edges") into the set of inhabited subsets of this set. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by Jim Kingdon, 29-Dec-2025.)
 |- UHGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { s  e.  ~P v  |  E. j  j  e.  s } }
 
Definitiondf-ushgrm 15835* Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function  e is an injective (one-to-one) function into subsets of the set of vertices  v, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by Jim Kingdon, 31-Dec-2025.)
 |- USHGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j  j  e.  s } }
 
Theoremisuhgrm 15836* The predicate "is an undirected hypergraph." (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e.  U  ->  ( G  e. UHGraph  <->  E : dom  E --> { s  e.  ~P V  |  E. j  j  e.  s }
 ) )
 
Theoremisushgrm 15837* The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e.  U  ->  ( G  e. USHGraph  <->  E : dom  E -1-1-> { s  e.  ~P V  |  E. j  j  e.  s } ) )
 
Theoremuhgrfm 15838* The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UHGraph  ->  E : dom  E --> { s  e.  ~P V  |  E. j  j  e.  s } )
 
Theoremushgrfm 15839* The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e. USHGraph  ->  E : dom  E -1-1-> { s  e.  ~P V  |  E. j  j  e.  s } )
 
Theoremuhgrss 15840 An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UHGraph  /\  F  e.  dom  E )  ->  ( E `  F )  C_  V )
 
Theoremuhgreq12g 15841 If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  W  =  (Vtx `  H )   &    |-  F  =  (iEdg `  H )   =>    |-  ( ( ( G  e.  X  /\  H  e.  Y )  /\  ( V  =  W  /\  E  =  F )
 )  ->  ( G  e. UHGraph  <->  H  e. UHGraph ) )
 
Theoremuhgrfun 15842 The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UHGraph  ->  Fun  E )
 
Theoremuhgrm 15843* An edge is an inhabited subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UHGraph  /\  E  Fn  A  /\  F  e.  A )  ->  E. j  j  e.  ( E `  F ) )
 
Theoremlpvtx 15844 The endpoints of a loop (which is an edge at index  J) are two (identical) vertices  A. (Contributed by AV, 1-Feb-2021.)
 |-  I  =  (iEdg `  G )   =>    |-  ( ( G  e. UHGraph  /\  J  e.  dom  I  /\  ( I `  J )  =  { A } )  ->  A  e.  (Vtx `  G ) )
 
Theoremushgruhgr 15845 An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
 |-  ( G  e. USHGraph  ->  G  e. UHGraph )
 
Theoremisuhgropm 15846* The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.)
 |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( <. V ,  E >.  e. UHGraph  <->  E : dom  E --> { s  e.  ~P V  |  E. j  j  e.  s }
 ) )
 
Theoremuhgr0e 15847 The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
 |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  (iEdg `  G )  =  (/) )   =>    |-  ( ph  ->  G  e. UHGraph )
 
Theorempw0ss 15848* There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.)
 |- 
 { s  e.  ~P (/) 
 |  E. j  j  e.  s }  =  (/)
 
Theoremuhgr0vb 15849 The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.)
 |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( G  e. UHGraph  <->  (iEdg `  G )  =  (/) ) )
 
Theoremuhgr0 15850 The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.)
 |-  (/)  e. UHGraph
 
Theoremuhgrun 15851 The union  U of two (undirected) hypergraphs  G and  H with the same vertex set  V is a hypergraph with the vertex set  V and the union  ( E  u.  F
) of the (indexed) edges. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
 |-  ( ph  ->  G  e. UHGraph )   &    |-  ( ph  ->  H  e. UHGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   &    |-  ( ph  ->  U  e.  W )   &    |-  ( ph  ->  (Vtx `  U )  =  V )   &    |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )   =>    |-  ( ph  ->  U  e. UHGraph )
 
Theoremuhgrunop 15852 The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If  <. V ,  E >. and  <. V ,  F >. are hypergraphs, then  <. V ,  E  u.  F >. is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
 |-  ( ph  ->  G  e. UHGraph )   &    |-  ( ph  ->  H  e. UHGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   =>    |-  ( ph  ->  <. V ,  ( E  u.  F ) >.  e. UHGraph )
 
Theoremushgrun 15853 The union  U of two (undirected) simple hypergraphs  G and  H with the same vertex set 
V is a (not necessarily simple) hypergraph with the vertex set  V and the union  ( E  u.  F
) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.)
 |-  ( ph  ->  G  e. USHGraph )   &    |-  ( ph  ->  H  e. USHGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   &    |-  ( ph  ->  U  e.  W )   &    |-  ( ph  ->  (Vtx `  U )  =  V )   &    |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )   =>    |-  ( ph  ->  U  e. UHGraph )
 
Theoremushgrunop 15854 The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If  <. V ,  E >. and  <. V ,  F >. are simple hypergraphs, then  <. V ,  E  u.  F >. is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.)
 |-  ( ph  ->  G  e. USHGraph )   &    |-  ( ph  ->  H  e. USHGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   =>    |-  ( ph  ->  <. V ,  ( E  u.  F ) >.  e. UHGraph )
 
Theoremincistruhgr 15855* An incidence structure 
<. P ,  L ,  I >. "where  P is a set whose elements are called points,  L is a distinct set whose elements are called lines and  I  C_  ( P  X.  L ) is the incidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With  P  =  (
Base `  S ) and by defining two new slots for lines and incidence relations and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structure is an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e.  W  /\  I  C_  ( P  X.  L )  /\  ran 
 I  =  L ) 
 ->  ( ( V  =  P  /\  E  =  ( e  e.  L  |->  { v  e.  P  |  v I e } )
 )  ->  G  e. UHGraph ) )
 
12.2.2  Undirected pseudographs and multigraphs
 
Syntaxcupgr 15856 Extend class notation with undirected pseudographs.
 class UPGraph
 
Syntaxcumgr 15857 Extend class notation with undirected multigraphs.
 class UMGraph
 
Definitiondf-upgren 15858* Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 
v (of "vertices") and a function  e (representing indexed "edges") into subsets of  v of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgren 15859). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
 |- UPGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  ( x  ~~ 
 1o  \/  x  ~~  2o ) } }
 
Definitiondf-umgren 15859* Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 
v (of "vertices") and a function  e (representing indexed "edges") into subsets of  v of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." (Contributed by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
 |- UMGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  x  ~~  2o } }
 
Theoremisupgren 15860* The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e.  U  ->  ( G  e. UPGraph  <->  E : dom  E --> { x  e.  ~P V  |  ( x  ~~ 
 1o  \/  x  ~~  2o ) } ) )
 
Theoremwrdupgren 15861* The property of being an undirected pseudograph, expressing the edges as "words". (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e.  U  /\  E  e. Word  X )  ->  ( G  e. UPGraph  <->  E  e. Word  { x  e.  ~P V  |  ( x  ~~ 
 1o  \/  x  ~~  2o ) } ) )
 
Theoremupgrfen 15862* The edge function of an undirected pseudograph is a function into unordered pairs of vertices. Version of upgrfnen 15863 without explicitly specified domain of the edge function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UPGraph  ->  E : dom  E --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }
 )
 
Theoremupgrfnen 15863* The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UPGraph  /\  E  Fn  A ) 
 ->  E : A --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }
 )
 
Theoremupgrss 15864 An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 29-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UPGraph  /\  F  e.  dom  E )  ->  ( E `  F )  C_  V )
 
Theoremupgrm 15865* An edge is an inhabited subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  ->  E. j  j  e.  ( E `  F ) )
 
Theoremupgr1or2 15866 An edge of an undirected pseudograph has one or two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  ->  ( ( E `  F )  ~~  1o  \/  ( E `  F ) 
 ~~  2o ) )
 
Theoremupgrfi 15867 An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  ->  ( E `  F )  e.  Fin )
 
Theoremupgrex 15868* An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  { x ,  y } )
 
Theoremupgrop 15869 A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.)
 |-  ( G  e. UPGraph  ->  <. (Vtx `  G ) ,  (iEdg `  G ) >.  e. UPGraph )
 
Theoremisumgren 15870* The property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e.  U  ->  ( G  e. UMGraph  <->  E : dom  E --> { x  e.  ~P V  |  x  ~~  2o } ) )
 
Theoremwrdumgren 15871* The property of being an undirected multigraph, expressing the edges as "words". (Contributed by AV, 24-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e.  U  /\  E  e. Word  X )  ->  ( G  e. UMGraph  <->  E  e. Word  { x  e.  ~P V  |  x  ~~  2o } ) )
 
Theoremumgrfen 15872* The edge function of an undirected multigraph is a function into unordered pairs of vertices. Version of umgrfnen 15873 without explicitly specified domain of the edge function. (Contributed by AV, 24-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UMGraph  ->  E : dom  E --> { x  e.  ~P V  |  x  ~~ 
 2o } )
 
Theoremumgrfnen 15873* The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by AV, 24-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UMGraph  /\  E  Fn  A ) 
 ->  E : A --> { x  e.  ~P V  |  x  ~~ 
 2o } )
 
Theoremumgredg2en 15874 An edge of a multigraph has exactly two ends. (Contributed by AV, 24-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UMGraph  /\  X  e.  dom  E )  ->  ( E `  X )  ~~  2o )
 
Theoremumgrbien 15875* Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021.)
 |-  X  e.  V   &    |-  Y  e.  V   &    |-  X  =/=  Y   =>    |-  { X ,  Y }  e.  { x  e.  ~P V  |  x  ~~  2o }
 
Theoremupgruhgr 15876 An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.)
 |-  ( G  e. UPGraph  ->  G  e. UHGraph )
 
Theoremumgrupgr 15877 An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.)
 |-  ( G  e. UMGraph  ->  G  e. UPGraph )
 
Theoremumgruhgr 15878 An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.)
 |-  ( G  e. UMGraph  ->  G  e. UHGraph )
 
Theoremumgrnloopv 15879 In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UMGraph  /\  M  e.  W ) 
 ->  ( ( E `  X )  =  { M ,  N }  ->  M  =/=  N ) )
 
Theoremumgredgprv 15880 In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either  M or  N could be proper classes ( ( E `  X ) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   &    |-  V  =  (Vtx `  G )   =>    |-  ( ( G  e. UMGraph  /\  X  e.  dom  E )  ->  ( ( E `
  X )  =  { M ,  N }  ->  ( M  e.  V  /\  N  e.  V ) ) )
 
Theoremumgrnloop 15881* In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UMGraph  ->  ( E. x  e.  dom  E ( E `  x )  =  { M ,  N }  ->  M  =/=  N ) )
 
Theoremumgrnloop0 15882* A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UMGraph  ->  { x  e.  dom  E  |  ( E `  x )  =  { U } }  =  (/) )
 
Theoremumgr0e 15883 The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
 |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  (iEdg `  G )  =  (/) )   =>    |-  ( ph  ->  G  e. UMGraph )
 
Theoremupgr0e 15884 The empty graph, with vertices but no edges, is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.)
 |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  (iEdg `  G )  =  (/) )   =>    |-  ( ph  ->  G  e. UPGraph )
 
Theoremupgr1elem1 15885* Lemma for upgr1edc 15886. (Contributed by AV, 16-Oct-2020.) (Revised by Jim Kingdon, 6-Jan-2026.)
 |-  ( ph  ->  { B ,  C }  e.  S )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  -> DECID  B  =  C )   =>    |-  ( ph  ->  { { B ,  C } }  C_  { x  e.  S  |  ( x  ~~  1o  \/  x  ~~  2o ) }
 )
 
Theoremupgr1edc 15886 A pseudograph with one edge. Such a graph is actually a simple pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  -> DECID  B  =  C )   &    |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  { B ,  C } >. } )   =>    |-  ( ph  ->  G  e. UPGraph )
 
Theoremupgr0eop 15887 The empty graph, with vertices but no edges, is a pseudograph. The empty graph is actually a simple graph, and therefore also a multigraph ( G  e. UMGraph). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.)
 |-  ( V  e.  W  -> 
 <. V ,  (/) >.  e. UPGraph )
 
Theoremupgr1eopdc 15888 A pseudograph with one edge. Such a graph is actually a simple pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.)
 |-  ( ph  ->  V  e.  W )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  -> DECID  B  =  C )   =>    |-  ( ph  ->  <. V ,  { <. A ,  { B ,  C } >. } >.  e. UPGraph )
 
Theoremupgrun 15889 The union  U of two pseudographs  G and  H with the same vertex set  V is a pseudograph with the vertex  V and the union  ( E  u.  F ) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
 |-  ( ph  ->  G  e. UPGraph )   &    |-  ( ph  ->  H  e. UPGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   &    |-  ( ph  ->  U  e.  W )   &    |-  ( ph  ->  (Vtx `  U )  =  V )   &    |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )   =>    |-  ( ph  ->  U  e. UPGraph )
 
Theoremupgrunop 15890 The union of two pseudographs (with the same vertex set): If  <. V ,  E >. and  <. V ,  F >. are pseudographs, then  <. V ,  E  u.  F >. is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
 |-  ( ph  ->  G  e. UPGraph )   &    |-  ( ph  ->  H  e. UPGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   =>    |-  ( ph  ->  <. V ,  ( E  u.  F ) >.  e. UPGraph )
 
Theoremumgrun 15891 The union  U of two multigraphs  G and  H with the same vertex set  V is a multigraph with the vertex  V and the union  ( E  u.  F ) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.)
 |-  ( ph  ->  G  e. UMGraph )   &    |-  ( ph  ->  H  e. UMGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   &    |-  ( ph  ->  U  e.  W )   &    |-  ( ph  ->  (Vtx `  U )  =  V )   &    |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )   =>    |-  ( ph  ->  U  e. UMGraph )
 
Theoremumgrunop 15892 The union of two multigraphs (with the same vertex set): If  <. V ,  E >. and  <. V ,  F >. are multigraphs, then  <. V ,  E  u.  F >. is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
 |-  ( ph  ->  G  e. UMGraph )   &    |-  ( ph  ->  H  e. UMGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   =>    |-  ( ph  ->  <. V ,  ( E  u.  F ) >.  e. UMGraph )
 
12.2.3  Loop-free graphs

For a hypergraph, the property to be "loop-free" is expressed by  I : dom  I --> E with  E  =  { x  e.  ~P V  |  2o  ~<_  x } and  I  =  (iEdg `  G ).  E is the set of edges which connect at least two vertices.

 
Theoremumgrislfupgrenlem 15893 Lemma for umgrislfupgrdom 15894. (Contributed by AV, 27-Jan-2021.)
 |-  ( { x  e. 
 ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x }
 )  =  { x  e.  ~P V  |  x  ~~ 
 2o }
 
Theoremumgrislfupgrdom 15894* A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   =>    |-  ( G  e. UMGraph  <->  ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x }
 ) )
 
Theoremlfgredg2dom 15895* An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.)
 |-  I  =  (iEdg `  G )   &    |-  A  =  dom  I   &    |-  E  =  { x  e.  ~P V  |  2o  ~<_  x }   =>    |-  ( ( I : A
 --> E  /\  X  e.  A )  ->  2o  ~<_  ( I `
  X ) )
 
Theoremlfgrnloopen 15896* A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.)
 |-  I  =  (iEdg `  G )   &    |-  A  =  dom  I   &    |-  E  =  { x  e.  ~P V  |  2o  ~<_  x }   =>    |-  ( I : A --> E  ->  { x  e.  A  |  ( I `
  x )  ~~  1o }  =  (/) )
 
12.2.4  Edges as subsets of vertices of graphs
 
Theoremuhgredgiedgb 15897* In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.)
 |-  I  =  (iEdg `  G )   =>    |-  ( G  e. UHGraph  ->  ( E  e.  (Edg `  G ) 
 <-> 
 E. x  e.  dom  I  E  =  ( I `
  x ) ) )
 
Theoremuhgriedg0edg0 15898 A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020.) (Proof shortened by AV, 8-Dec-2021.)
 |-  ( G  e. UHGraph  ->  (
 (Edg `  G )  =  (/)  <->  (iEdg `  G )  =  (/) ) )
 
Theoremuhgredgm 15899* An edge of a hypergraph is an inhabited subset of vertices. (Contributed by AV, 28-Nov-2020.)
 |-  ( ( G  e. UHGraph  /\  E  e.  (Edg `  G ) )  ->  ( E  e.  ~P (Vtx `  G )  /\  E. x  x  e.  E ) )
 
Theoremedguhgr 15900 An edge of a hypergraph is a subset of vertices. (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 28-Nov-2020.)
 |-  ( ( G  e. UHGraph  /\  E  e.  (Edg `  G ) )  ->  E  e.  ~P (Vtx `  G ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >