| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isuhgrm | Unicode version | ||
| Description: The predicate "is an undirected hypergraph." (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| Ref | Expression |
|---|---|
| isuhgr.v |
|
| isuhgr.e |
|
| Ref | Expression |
|---|---|
| isuhgrm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-uhgrm 15877 |
. . 3
| |
| 2 | 1 | eleq2i 2296 |
. 2
|
| 3 | fveq2 5629 |
. . . . 5
| |
| 4 | isuhgr.e |
. . . . 5
| |
| 5 | 3, 4 | eqtr4di 2280 |
. . . 4
|
| 6 | 3 | dmeqd 4925 |
. . . . 5
|
| 7 | 4 | eqcomi 2233 |
. . . . . 6
|
| 8 | 7 | dmeqi 4924 |
. . . . 5
|
| 9 | 6, 8 | eqtrdi 2278 |
. . . 4
|
| 10 | fveq2 5629 |
. . . . . . 7
| |
| 11 | isuhgr.v |
. . . . . . 7
| |
| 12 | 10, 11 | eqtr4di 2280 |
. . . . . 6
|
| 13 | 12 | pweqd 3654 |
. . . . 5
|
| 14 | 13 | rabeqdv 2793 |
. . . 4
|
| 15 | 5, 9, 14 | feq123d 5464 |
. . 3
|
| 16 | vtxex 15827 |
. . . . . . 7
| |
| 17 | 16 | elv 2803 |
. . . . . 6
|
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | fveq2 5629 |
. . . . 5
| |
| 20 | iedgex 15828 |
. . . . . . . 8
| |
| 21 | 20 | elv 2803 |
. . . . . . 7
|
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | fveq2 5629 |
. . . . . . 7
| |
| 24 | 23 | adantr 276 |
. . . . . 6
|
| 25 | simpr 110 |
. . . . . . 7
| |
| 26 | 25 | dmeqd 4925 |
. . . . . . 7
|
| 27 | simpr 110 |
. . . . . . . . . 10
| |
| 28 | 27 | pweqd 3654 |
. . . . . . . . 9
|
| 29 | 28 | rabeqdv 2793 |
. . . . . . . 8
|
| 30 | 29 | adantr 276 |
. . . . . . 7
|
| 31 | 25, 26, 30 | feq123d 5464 |
. . . . . 6
|
| 32 | 22, 24, 31 | sbcied2 3066 |
. . . . 5
|
| 33 | 18, 19, 32 | sbcied2 3066 |
. . . 4
|
| 34 | 33 | cbvabv 2354 |
. . 3
|
| 35 | 15, 34 | elab2g 2950 |
. 2
|
| 36 | 2, 35 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 df-ndx 13043 df-slot 13044 df-base 13046 df-edgf 15814 df-vtx 15823 df-iedg 15824 df-uhgrm 15877 |
| This theorem is referenced by: uhgrfm 15881 uhgreq12g 15884 ushgruhgr 15888 isuhgropm 15889 uhgr0e 15890 uhgr0 15893 uhgrun 15894 incistruhgr 15898 upgruhgr 15919 |
| Copyright terms: Public domain | W3C validator |