ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-vtx Unicode version

Definition df-vtx 15809
Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-vtx  |- Vtx  =  ( g  e.  _V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g
) ,  ( Base `  g ) ) )

Detailed syntax breakdown of Definition df-vtx
StepHypRef Expression
1 cvtx 15807 . 2  class Vtx
2 vg . . 3  setvar  g
3 cvv 2799 . . 3  class  _V
42cv 1394 . . . . 5  class  g
53, 3cxp 4716 . . . . 5  class  ( _V 
X.  _V )
64, 5wcel 2200 . . . 4  wff  g  e.  ( _V  X.  _V )
7 c1st 6282 . . . . 5  class  1st
84, 7cfv 5317 . . . 4  class  ( 1st `  g )
9 cbs 13027 . . . . 5  class  Base
104, 9cfv 5317 . . . 4  class  ( Base `  g )
116, 8, 10cif 3602 . . 3  class  if ( g  e.  ( _V 
X.  _V ) ,  ( 1st `  g ) ,  ( Base `  g
) )
122, 3, 11cmpt 4144 . 2  class  ( g  e.  _V  |->  if ( g  e.  ( _V 
X.  _V ) ,  ( 1st `  g ) ,  ( Base `  g
) ) )
131, 12wceq 1395 1  wff Vtx  =  ( g  e.  _V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g
) ,  ( Base `  g ) ) )
Colors of variables: wff set class
This definition is referenced by:  vtxvalg  15811  1vgrex  15815
  Copyright terms: Public domain W3C validator