ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-vtx GIF version

Definition df-vtx 15688
Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-vtx Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))

Detailed syntax breakdown of Definition df-vtx
StepHypRef Expression
1 cvtx 15686 . 2 class Vtx
2 vg . . 3 setvar 𝑔
3 cvv 2773 . . 3 class V
42cv 1372 . . . . 5 class 𝑔
53, 3cxp 4681 . . . . 5 class (V × V)
64, 5wcel 2177 . . . 4 wff 𝑔 ∈ (V × V)
7 c1st 6237 . . . . 5 class 1st
84, 7cfv 5280 . . . 4 class (1st𝑔)
9 cbs 12907 . . . . 5 class Base
104, 9cfv 5280 . . . 4 class (Base‘𝑔)
116, 8, 10cif 3575 . . 3 class if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔))
122, 3, 11cmpt 4113 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
131, 12wceq 1373 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
Colors of variables: wff set class
This definition is referenced by:  vtxvalg  15690  1vgrex  15694
  Copyright terms: Public domain W3C validator