ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-vtx GIF version

Definition df-vtx 15555
Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-vtx Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))

Detailed syntax breakdown of Definition df-vtx
StepHypRef Expression
1 cvtx 15553 . 2 class Vtx
2 vg . . 3 setvar 𝑔
3 cvv 2771 . . 3 class V
42cv 1371 . . . . 5 class 𝑔
53, 3cxp 4672 . . . . 5 class (V × V)
64, 5wcel 2175 . . . 4 wff 𝑔 ∈ (V × V)
7 c1st 6223 . . . . 5 class 1st
84, 7cfv 5270 . . . 4 class (1st𝑔)
9 cbs 12774 . . . . 5 class Base
104, 9cfv 5270 . . . 4 class (Base‘𝑔)
116, 8, 10cif 3570 . . 3 class if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔))
122, 3, 11cmpt 4104 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
131, 12wceq 1372 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
Colors of variables: wff set class
This definition is referenced by:  vtxvalg  15557  1vgrex  15559
  Copyright terms: Public domain W3C validator