| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-vtx | GIF version | ||
| Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.) |
| Ref | Expression |
|---|---|
| df-vtx | ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvtx 15807 | . 2 class Vtx | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 2799 | . . 3 class V | |
| 4 | 2 | cv 1394 | . . . . 5 class 𝑔 |
| 5 | 3, 3 | cxp 4716 | . . . . 5 class (V × V) |
| 6 | 4, 5 | wcel 2200 | . . . 4 wff 𝑔 ∈ (V × V) |
| 7 | c1st 6282 | . . . . 5 class 1st | |
| 8 | 4, 7 | cfv 5317 | . . . 4 class (1st ‘𝑔) |
| 9 | cbs 13027 | . . . . 5 class Base | |
| 10 | 4, 9 | cfv 5317 | . . . 4 class (Base‘𝑔) |
| 11 | 6, 8, 10 | cif 3602 | . . 3 class if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔)) |
| 12 | 2, 3, 11 | cmpt 4144 | . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) |
| 13 | 1, 12 | wceq 1395 | 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) |
| Colors of variables: wff set class |
| This definition is referenced by: vtxvalg 15811 1vgrex 15815 |
| Copyright terms: Public domain | W3C validator |