ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1vgrex Unicode version

Theorem 1vgrex 15559
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.)
Hypothesis
Ref Expression
1vgrex.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
1vgrex  |-  ( N  e.  V  ->  G  e.  _V )

Proof of Theorem 1vgrex
StepHypRef Expression
1 df-vtx 15555 . . . . . 6  |- Vtx  =  ( g  e.  _V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g
) ,  ( Base `  g ) ) )
21funmpt2 5309 . . . . 5  |-  Fun Vtx
3 funrel 5287 . . . . 5  |-  ( Fun Vtx  ->  Rel Vtx )
42, 3ax-mp 5 . . . 4  |-  Rel Vtx
5 relelfvdm 5607 . . . 4  |-  ( ( Rel Vtx  /\  N  e.  (Vtx `  G ) )  ->  G  e.  dom Vtx )
64, 5mpan 424 . . 3  |-  ( N  e.  (Vtx `  G
)  ->  G  e.  dom Vtx )
7 1vgrex.v . . 3  |-  V  =  (Vtx `  G )
86, 7eleq2s 2299 . 2  |-  ( N  e.  V  ->  G  e.  dom Vtx )
98elexd 2784 1  |-  ( N  e.  V  ->  G  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771   ifcif 3570    X. cxp 4672   dom cdm 4674   Rel wrel 4679   Fun wfun 5264   ` cfv 5270   1stc1st 6223   Basecbs 12774  Vtxcvtx 15553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-vtx 15555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator