ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1vgrex Unicode version

Theorem 1vgrex 15815
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.)
Hypothesis
Ref Expression
1vgrex.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
1vgrex  |-  ( N  e.  V  ->  G  e.  _V )

Proof of Theorem 1vgrex
StepHypRef Expression
1 df-vtx 15809 . . . . . 6  |- Vtx  =  ( g  e.  _V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g
) ,  ( Base `  g ) ) )
21funmpt2 5356 . . . . 5  |-  Fun Vtx
3 funrel 5334 . . . . 5  |-  ( Fun Vtx  ->  Rel Vtx )
42, 3ax-mp 5 . . . 4  |-  Rel Vtx
5 relelfvdm 5658 . . . 4  |-  ( ( Rel Vtx  /\  N  e.  (Vtx `  G ) )  ->  G  e.  dom Vtx )
64, 5mpan 424 . . 3  |-  ( N  e.  (Vtx `  G
)  ->  G  e.  dom Vtx )
7 1vgrex.v . . 3  |-  V  =  (Vtx `  G )
86, 7eleq2s 2324 . 2  |-  ( N  e.  V  ->  G  e.  dom Vtx )
98elexd 2813 1  |-  ( N  e.  V  ->  G  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   ifcif 3602    X. cxp 4716   dom cdm 4718   Rel wrel 4723   Fun wfun 5311   ` cfv 5317   1stc1st 6282   Basecbs 13027  Vtxcvtx 15807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-vtx 15809
This theorem is referenced by:  upgr1edc  15915
  Copyright terms: Public domain W3C validator