ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1vgrex Unicode version

Theorem 1vgrex 15694
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.)
Hypothesis
Ref Expression
1vgrex.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
1vgrex  |-  ( N  e.  V  ->  G  e.  _V )

Proof of Theorem 1vgrex
StepHypRef Expression
1 df-vtx 15688 . . . . . 6  |- Vtx  =  ( g  e.  _V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g
) ,  ( Base `  g ) ) )
21funmpt2 5319 . . . . 5  |-  Fun Vtx
3 funrel 5297 . . . . 5  |-  ( Fun Vtx  ->  Rel Vtx )
42, 3ax-mp 5 . . . 4  |-  Rel Vtx
5 relelfvdm 5621 . . . 4  |-  ( ( Rel Vtx  /\  N  e.  (Vtx `  G ) )  ->  G  e.  dom Vtx )
64, 5mpan 424 . . 3  |-  ( N  e.  (Vtx `  G
)  ->  G  e.  dom Vtx )
7 1vgrex.v . . 3  |-  V  =  (Vtx `  G )
86, 7eleq2s 2301 . 2  |-  ( N  e.  V  ->  G  e.  dom Vtx )
98elexd 2787 1  |-  ( N  e.  V  ->  G  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773   ifcif 3575    X. cxp 4681   dom cdm 4683   Rel wrel 4688   Fun wfun 5274   ` cfv 5280   1stc1st 6237   Basecbs 12907  Vtxcvtx 15686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-vtx 15688
This theorem is referenced by:  upgr1edc  15789
  Copyright terms: Public domain W3C validator