ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iedg Unicode version

Definition df-iedg 15810
Description: Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-iedg  |- iEdg  =  ( g  e.  _V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 2nd `  g
) ,  (.ef `  g ) ) )

Detailed syntax breakdown of Definition df-iedg
StepHypRef Expression
1 ciedg 15808 . 2  class iEdg
2 vg . . 3  setvar  g
3 cvv 2799 . . 3  class  _V
42cv 1394 . . . . 5  class  g
53, 3cxp 4716 . . . . 5  class  ( _V 
X.  _V )
64, 5wcel 2200 . . . 4  wff  g  e.  ( _V  X.  _V )
7 c2nd 6283 . . . . 5  class  2nd
84, 7cfv 5317 . . . 4  class  ( 2nd `  g )
9 cedgf 15799 . . . . 5  class .ef
104, 9cfv 5317 . . . 4  class  (.ef `  g )
116, 8, 10cif 3602 . . 3  class  if ( g  e.  ( _V 
X.  _V ) ,  ( 2nd `  g ) ,  (.ef `  g
) )
122, 3, 11cmpt 4144 . 2  class  ( g  e.  _V  |->  if ( g  e.  ( _V 
X.  _V ) ,  ( 2nd `  g ) ,  (.ef `  g
) ) )
131, 12wceq 1395 1  wff iEdg  =  ( g  e.  _V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 2nd `  g
) ,  (.ef `  g ) ) )
Colors of variables: wff set class
This definition is referenced by:  iedgvalg  15812
  Copyright terms: Public domain W3C validator