ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtxvalg Unicode version

Theorem vtxvalg 15557
Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.)
Assertion
Ref Expression
vtxvalg  |-  ( G  e.  V  ->  (Vtx `  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) ) )

Proof of Theorem vtxvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 df-vtx 15555 . 2  |- Vtx  =  ( g  e.  _V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g
) ,  ( Base `  g ) ) )
2 eleq1 2267 . . 3  |-  ( g  =  G  ->  (
g  e.  ( _V 
X.  _V )  <->  G  e.  ( _V  X.  _V )
) )
3 fveq2 5575 . . 3  |-  ( g  =  G  ->  ( 1st `  g )  =  ( 1st `  G
) )
4 fveq2 5575 . . 3  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
52, 3, 4ifbieq12d 3596 . 2  |-  ( g  =  G  ->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g
) ,  ( Base `  g ) )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G ) ,  (
Base `  G )
) )
6 elex 2782 . 2  |-  ( G  e.  V  ->  G  e.  _V )
7 1stexg 6252 . . 3  |-  ( G  e.  V  ->  ( 1st `  G )  e. 
_V )
8 basfn 12832 . . . 4  |-  Base  Fn  _V
9 funfvex 5592 . . . . 5  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
109funfni 5375 . . . 4  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
118, 6, 10sylancr 414 . . 3  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
127, 11ifexd 4530 . 2  |-  ( G  e.  V  ->  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) )  e. 
_V )
131, 5, 6, 12fvmptd3 5672 1  |-  ( G  e.  V  ->  (Vtx `  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771   ifcif 3570    X. cxp 4672    Fn wfn 5265   ` cfv 5270   1stc1st 6223   Basecbs 12774  Vtxcvtx 15553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fo 5276  df-fv 5278  df-1st 6225  df-inn 9036  df-ndx 12777  df-slot 12778  df-base 12780  df-vtx 15555
This theorem is referenced by:  opvtxval  15560  funvtxdm2domval  15568  funvtxdm2vald  15570
  Copyright terms: Public domain W3C validator