ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtxvalg Unicode version

Theorem vtxvalg 15690
Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.)
Assertion
Ref Expression
vtxvalg  |-  ( G  e.  V  ->  (Vtx `  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) ) )

Proof of Theorem vtxvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 df-vtx 15688 . 2  |- Vtx  =  ( g  e.  _V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g
) ,  ( Base `  g ) ) )
2 eleq1 2269 . . 3  |-  ( g  =  G  ->  (
g  e.  ( _V 
X.  _V )  <->  G  e.  ( _V  X.  _V )
) )
3 fveq2 5589 . . 3  |-  ( g  =  G  ->  ( 1st `  g )  =  ( 1st `  G
) )
4 fveq2 5589 . . 3  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
52, 3, 4ifbieq12d 3602 . 2  |-  ( g  =  G  ->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g
) ,  ( Base `  g ) )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G ) ,  (
Base `  G )
) )
6 elex 2785 . 2  |-  ( G  e.  V  ->  G  e.  _V )
7 1stexg 6266 . . 3  |-  ( G  e.  V  ->  ( 1st `  G )  e. 
_V )
8 basfn 12965 . . . 4  |-  Base  Fn  _V
9 funfvex 5606 . . . . 5  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
109funfni 5385 . . . 4  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
118, 6, 10sylancr 414 . . 3  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
127, 11ifexd 4539 . 2  |-  ( G  e.  V  ->  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) )  e. 
_V )
131, 5, 6, 12fvmptd3 5686 1  |-  ( G  e.  V  ->  (Vtx `  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773   ifcif 3575    X. cxp 4681    Fn wfn 5275   ` cfv 5280   1stc1st 6237   Basecbs 12907  Vtxcvtx 15686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fo 5286  df-fv 5288  df-1st 6239  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-vtx 15688
This theorem is referenced by:  vtxex  15692  opvtxval  15695  funvtxdm2domval  15703  funvtxdm2vald  15705  vtxval0  15725
  Copyright terms: Public domain W3C validator