ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-xadd Unicode version

Definition df-xadd 9662
Description: Define addition over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xadd  |-  +e 
=  ( x  e. 
RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-xadd
StepHypRef Expression
1 cxad 9659 . 2  class  +e
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cxr 7894 . . 3  class  RR*
52cv 1334 . . . . 5  class  x
6 cpnf 7892 . . . . 5  class +oo
75, 6wceq 1335 . . . 4  wff  x  = +oo
83cv 1334 . . . . . 6  class  y
9 cmnf 7893 . . . . . 6  class -oo
108, 9wceq 1335 . . . . 5  wff  y  = -oo
11 cc0 7715 . . . . 5  class  0
1210, 11, 6cif 3505 . . . 4  class  if ( y  = -oo , 
0 , +oo )
135, 9wceq 1335 . . . . 5  wff  x  = -oo
148, 6wceq 1335 . . . . . 6  wff  y  = +oo
1514, 11, 9cif 3505 . . . . 5  class  if ( y  = +oo , 
0 , -oo )
16 caddc 7718 . . . . . . . 8  class  +
175, 8, 16co 5818 . . . . . . 7  class  ( x  +  y )
1810, 9, 17cif 3505 . . . . . 6  class  if ( y  = -oo , -oo ,  ( x  +  y ) )
1914, 6, 18cif 3505 . . . . 5  class  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) )
2013, 15, 19cif 3505 . . . 4  class  if ( x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) )
217, 12, 20cif 3505 . . 3  class  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )
222, 3, 4, 4, 21cmpo 5820 . 2  class  ( x  e.  RR* ,  y  e. 
RR*  |->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
231, 22wceq 1335 1  wff  +e 
=  ( x  e. 
RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  xaddf  9730  xaddval  9731
  Copyright terms: Public domain W3C validator