HomeHome Intuitionistic Logic Explorer
Theorem List (p. 98 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9701-9800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem9t8e72 9701 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  8
 )  = ; 7 2
 
Theorem9t9e81 9702 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  9
 )  = ; 8 1
 
Theorem9t11e99 9703 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.)
 |-  ( 9  x. ; 1 1 )  = ; 9
 9
 
Theorem9lt10 9704 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
 |-  9  < ; 1 0
 
Theorem8lt10 9705 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
 |-  8  < ; 1 0
 
Theorem7lt10 9706 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  7  < ; 1 0
 
Theorem6lt10 9707 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  6  < ; 1 0
 
Theorem5lt10 9708 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  5  < ; 1 0
 
Theorem4lt10 9709 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  4  < ; 1 0
 
Theorem3lt10 9710 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  3  < ; 1 0
 
Theorem2lt10 9711 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  2  < ; 1 0
 
Theorem1lt10 9712 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  1  < ; 1 0
 
Theoremdecbin0 9713 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( 4  x.  A )  =  ( 2  x.  ( 2  x.  A ) )
 
Theoremdecbin2 9714 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  ( ( 2  x.  A )  +  1 ) )
 
Theoremdecbin3 9715 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( ( 4  x.  A )  +  3 )  =  ( ( 2  x.  ( ( 2  x.  A )  +  1 ) )  +  1 )
 
Theoremhalfthird 9716 Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.)
 |-  ( ( 1  / 
 2 )  -  (
 1  /  3 )
 )  =  ( 1 
 /  6 )
 
Theorem5recm6rec 9717 One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
 |-  ( ( 1  / 
 5 )  -  (
 1  /  6 )
 )  =  ( 1 
 / ; 3 0 )
 
4.4.11  Upper sets of integers
 
Syntaxcuz 9718 Extend class notation with the upper integer function. Read " ZZ>= `  M " as "the set of integers greater than or equal to  M".
 class  ZZ>=
 
Definitiondf-uz 9719* Define a function whose value at  j is the semi-infinite set of contiguous integers starting at  j, which we will also call the upper integers starting at  j. Read " ZZ>= `  M " as "the set of integers greater than or equal to  M". See uzval 9720 for its value, uzssz 9738 for its relationship to  ZZ, nnuz 9754 and nn0uz 9753 for its relationships to  NN and  NN0, and eluz1 9722 and eluz2 9724 for its membership relations. (Contributed by NM, 5-Sep-2005.)
 |- 
 ZZ>=  =  ( j  e. 
 ZZ  |->  { k  e.  ZZ  |  j  <_  k }
 )
 
Theoremuzval 9720* The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ZZ  ->  ( ZZ>= `  N )  =  { k  e.  ZZ  |  N  <_  k }
 )
 
Theoremuzf 9721 The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |- 
 ZZ>= : ZZ --> ~P ZZ
 
Theoremeluz1 9722 Membership in the upper set of integers starting at  M. (Contributed by NM, 5-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>=
 `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
 
Theoremeluzel2 9723 Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  M  e.  ZZ )
 
Theoremeluz2 9724 Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show  M  e.  ZZ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )
 )
 
Theoremeluz1i 9725 Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.)
 |-  M  e.  ZZ   =>    |-  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) )
 
Theoremeluzuzle 9726 An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.)
 |-  ( ( B  e.  ZZ  /\  B  <_  A )  ->  ( C  e.  ( ZZ>= `  A )  ->  C  e.  ( ZZ>= `  B ) ) )
 
Theoremeluzelz 9727 A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  ZZ )
 
Theoremeluzelre 9728 A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  RR )
 
Theoremeluzelcn 9729 A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  CC )
 
Theoremeluzle 9730 Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  M  <_  N )
 
Theoremeluz 9731 Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  ( ZZ>= `  M )  <->  M 
 <_  N ) )
 
Theoremuzid 9732 Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.)
 |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M ) )
 
Theoremuzidd 9733 Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   =>    |-  ( ph  ->  M  e.  ( ZZ>= `  M )
 )
 
Theoremuzn0 9734 The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.)
 |-  ( M  e.  ran  ZZ>=  ->  M  =/=  (/) )
 
Theoremuztrn 9735 Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
 |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N ) )  ->  M  e.  ( ZZ>= `  N ) )
 
Theoremuztrn2 9736 Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  K )   =>    |-  ( ( N  e.  Z  /\  M  e.  ( ZZ>=
 `  N ) ) 
 ->  M  e.  Z )
 
Theoremuzneg 9737 Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  -u M  e.  ( ZZ>= `  -u N ) )
 
Theoremuzssz 9738 An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ZZ>= `  M )  C_ 
 ZZ
 
Theoremuzss 9739 Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( ZZ>= `  N )  C_  ( ZZ>= `  M )
 )
 
Theoremuztric 9740 Trichotomy of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  ( ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
 
Theoremuz11 9741 The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.)
 |-  ( M  e.  ZZ  ->  ( ( ZZ>= `  M )  =  ( ZZ>= `  N )  <->  M  =  N ) )
 
Theoremeluzp1m1 9742 Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>=
 `  ( M  +  1 ) ) ) 
 ->  ( N  -  1
 )  e.  ( ZZ>= `  M ) )
 
Theoremeluzp1l 9743 Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>=
 `  ( M  +  1 ) ) ) 
 ->  M  <  N )
 
Theoremeluzp1p1 9744 Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  +  1
 )  e.  ( ZZ>= `  ( M  +  1
 ) ) )
 
Theoremeluzaddi 9745 Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.)
 |-  M  e.  ZZ   &    |-  K  e.  ZZ   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  +  K )  e.  ( ZZ>= `  ( M  +  K ) ) )
 
Theoremeluzsubi 9746 Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.)
 |-  M  e.  ZZ   &    |-  K  e.  ZZ   =>    |-  ( N  e.  ( ZZ>=
 `  ( M  +  K ) )  ->  ( N  -  K )  e.  ( ZZ>= `  M ) )
 
Theoremeluzadd 9747 Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ( ZZ>= `  ( M  +  K ) ) )
 
Theoremeluzsub 9748 Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( N  -  K )  e.  ( ZZ>= `  M ) )
 
Theoremuzm1 9749 Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  =  M  \/  ( N  -  1
 )  e.  ( ZZ>= `  M ) ) )
 
Theoremuznn0sub 9750 The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  -  M )  e.  NN0 )
 
Theoremuzin 9751 Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  N ) )  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )
 
Theoremuzp1 9752 Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1
 ) ) ) )
 
Theoremnn0uz 9753 Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.)
 |- 
 NN0  =  ( ZZ>= `  0 )
 
Theoremnnuz 9754 Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.)
 |- 
 NN  =  ( ZZ>= `  1 )
 
Theoremelnnuz 9755 A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.)
 |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
 )
 
Theoremelnn0uz 9756 A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.)
 |-  ( N  e.  NN0  <->  N  e.  ( ZZ>= `  0 )
 )
 
Theoremeluz2nn 9757 An integer is greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.)
 |-  ( A  e.  ( ZZ>=
 `  2 )  ->  A  e.  NN )
 
Theoremeluz4eluz2 9758 An integer greater than or equal to 4 is an integer greater than or equal to 2. (Contributed by AV, 30-May-2023.)
 |-  ( X  e.  ( ZZ>=
 `  4 )  ->  X  e.  ( ZZ>= `  2 ) )
 
Theoremeluz4nn 9759 An integer greater than or equal to 4 is a positive integer. (Contributed by AV, 30-May-2023.)
 |-  ( X  e.  ( ZZ>=
 `  4 )  ->  X  e.  NN )
 
Theoremeluzge2nn0 9760 If an integer is greater than or equal to 2, then it is a nonnegative integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV, 3-Nov-2018.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  N  e.  NN0 )
 
Theoremeluz2n0 9761 An integer greater than or equal to 2 is not 0. (Contributed by AV, 25-May-2020.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  N  =/=  0 )
 
Theoremuzuzle23 9762 An integer in the upper set of integers starting at 3 is element of the upper set of integers starting at 2. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( A  e.  ( ZZ>=
 `  3 )  ->  A  e.  ( ZZ>= `  2 ) )
 
Theoremeluzge3nn 9763 If an integer is greater than 3, then it is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( N  e.  ( ZZ>=
 `  3 )  ->  N  e.  NN )
 
Theoremuz3m2nn 9764 An integer greater than or equal to 3 decreased by 2 is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( N  e.  ( ZZ>=
 `  3 )  ->  ( N  -  2
 )  e.  NN )
 
Theorem1eluzge0 9765 1 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
 |-  1  e.  ( ZZ>= `  0 )
 
Theorem2eluzge0 9766 2 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
 |-  2  e.  ( ZZ>= `  0 )
 
Theorem2eluzge1 9767 2 is an integer greater than or equal to 1. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
 |-  2  e.  ( ZZ>= `  1 )
 
Theoremuznnssnn 9768 The upper integers starting from a natural are a subset of the naturals. (Contributed by Scott Fenton, 29-Jun-2013.)
 |-  ( N  e.  NN  ->  ( ZZ>= `  N )  C_ 
 NN )
 
Theoremraluz 9769* Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( A. n  e.  ( ZZ>= `  M ) ph 
 <-> 
 A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
 
Theoremraluz2 9770* Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( A. n  e.  ( ZZ>= `  M ) ph 
 <->  ( M  e.  ZZ  ->  A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
 
Theoremrexuz 9771* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( E. n  e.  ( ZZ>= `  M ) ph 
 <-> 
 E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
 
Theoremrexuz2 9772* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( E. n  e.  ( ZZ>= `  M ) ph 
 <->  ( M  e.  ZZ  /\ 
 E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
 
Theorem2rexuz 9773* Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.)
 |-  ( E. m E. n  e.  ( ZZ>= `  m ) ph  <->  E. m  e.  ZZ  E. n  e.  ZZ  ( m  <_  n  /\  ph )
 )
 
Theorempeano2uz 9774 Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  +  1
 )  e.  ( ZZ>= `  M ) )
 
Theorempeano2uzs 9775 Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  ( N  +  1 )  e.  Z )
 
Theorempeano2uzr 9776 Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>=
 `  ( M  +  1 ) ) ) 
 ->  N  e.  ( ZZ>= `  M ) )
 
Theoremuzaddcl 9777 Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  NN0 )  ->  ( N  +  K )  e.  ( ZZ>= `  M ) )
 
Theoremnn0pzuz 9778 The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
 |-  ( ( N  e.  NN0  /\  Z  e.  ZZ )  ->  ( N  +  Z )  e.  ( ZZ>= `  Z ) )
 
Theoremuzind4 9779* Induction on the upper set of integers that starts at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ch  ->  th )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ta )
 
Theoremuzind4ALT 9780* Induction on the upper set of integers that starts at an integer  M. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 9779 or uzind4ALT 9780 may be used; see comment for nnind 9122. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( M  e.  ZZ  ->  ps )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ch  ->  th )
 )   &    |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   =>    |-  ( N  e.  ( ZZ>= `  M )  ->  ta )
 
Theoremuzind4s 9781* Induction on the upper set of integers that starts at an integer  M, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
 |-  ( M  e.  ZZ  -> 
 [. M  /  k ]. ph )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ph  ->  [. (
 k  +  1 ) 
 /  k ]. ph )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  [. N  /  k ]. ph )
 
Theoremuzind4s2 9782* Induction on the upper set of integers that starts at an integer  M, using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s 9781 when  j and  k must be distinct in  [. ( k  +  1 )  /  j ]. ph. (Contributed by NM, 16-Nov-2005.)
 |-  ( M  e.  ZZ  -> 
 [. M  /  j ]. ph )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( [. k  /  j ]. ph  ->  [. (
 k  +  1 ) 
 /  j ]. ph )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  [. N  /  j ]. ph )
 
Theoremuzind4i 9783* Induction on the upper integers that start at  M. The first four give us the substitution instances we need, and the last two are the basis and the induction step. This is a stronger version of uzind4 9779 assuming that  ps holds unconditionally. Notice that  N  e.  (
ZZ>= `  M ) implies that the lower bound  M is an integer ( M  e.  ZZ, see eluzel2 9723). (Contributed by NM, 4-Sep-2005.) (Revised by AV, 13-Jul-2022.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 k  e.  ( ZZ>= `  M )  ->  ( ch 
 ->  th ) )   =>    |-  ( N  e.  ( ZZ>= `  M )  ->  ta )
 
Theoremindstr 9784* Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  e.  NN  ->  (
 A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
 )   =>    |-  ( x  e.  NN  -> 
 ph )
 
Theoreminfrenegsupex 9785* The infimum of a set of reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  -> inf ( A ,  RR ,  <  )  =  -u sup ( {
 z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
 )
 
Theoremsupinfneg 9786* If a set of real numbers has a least upper bound, the set of the negation of those numbers has a greatest lower bound. For a theorem which is similar but only for the boundedness part, see ublbneg 9804. (Contributed by Jim Kingdon, 15-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
 y ) ) )
 
Theoreminfsupneg 9787* If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 9786. (Contributed by Jim Kingdon, 15-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
 z ) ) )
 
Theoremsupminfex 9788* A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  sup ( A ,  RR ,  <  )  =  -uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
 
Theoreminfregelbex 9789* Any lower bound of a set of real numbers with an infimum is less than or equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( B  <_ inf ( A ,  RR ,  <  )  <->  A. z  e.  A  B  <_  z ) )
 
Theoremeluznn0 9790 Membership in a nonnegative upper set of integers implies membership in  NN0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN0 )
 
Theoremeluznn 9791 Membership in a positive upper set of integers implies membership in  NN. (Contributed by JJ, 1-Oct-2018.)
 |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>=
 `  N ) ) 
 ->  M  e.  NN )
 
Theoremeluz2b1 9792 Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  ZZ  /\  1  <  N ) )
 
Theoremeluz2gt1 9793 An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  -> 
 1  <  N )
 
Theoremeluz2b2 9794 Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  NN  /\  1  <  N ) )
 
Theoremeluz2b3 9795 Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  NN  /\  N  =/=  1
 ) )
 
Theoremuz2m1nn 9796 One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  ( N  -  1
 )  e.  NN )
 
Theorem1nuz2 9797 1 is not in  ( ZZ>= `  2
). (Contributed by Paul Chapman, 21-Nov-2012.)
 |- 
 -.  1  e.  ( ZZ>=
 `  2 )
 
Theoremelnn1uz2 9798 A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 ) ) )
 
Theoremuz2mulcl 9799 Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)
 |-  ( ( M  e.  ( ZZ>= `  2 )  /\  N  e.  ( ZZ>= `  2 ) )  ->  ( M  x.  N )  e.  ( ZZ>= `  2 ) )
 
Theoremindstr2 9800* Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
 |-  ( x  =  1 
 ->  ( ph  <->  ch ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ch   &    |-  ( x  e.  ( ZZ>= `  2 )  ->  ( A. y  e.  NN  (
 y  <  x  ->  ps )  ->  ph ) )   =>    |-  ( x  e.  NN  -> 
 ph )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >