Theorem List for Intuitionistic Logic Explorer - 9701-9800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | uzin 9701 |
Intersection of two upper intervals of integers. (Contributed by Mario
Carneiro, 24-Dec-2013.)
|
       
                |
| |
| Theorem | uzp1 9702 |
Choices for an element of an upper interval of integers. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
     
   
     |
| |
| Theorem | nn0uz 9703 |
Nonnegative integers expressed as an upper set of integers. (Contributed
by NM, 2-Sep-2005.)
|
     |
| |
| Theorem | nnuz 9704 |
Positive integers expressed as an upper set of integers. (Contributed by
NM, 2-Sep-2005.)
|
     |
| |
| Theorem | elnnuz 9705 |
A positive integer expressed as a member of an upper set of integers.
(Contributed by NM, 6-Jun-2006.)
|
       |
| |
| Theorem | elnn0uz 9706 |
A nonnegative integer expressed as a member an upper set of integers.
(Contributed by NM, 6-Jun-2006.)
|
       |
| |
| Theorem | eluz2nn 9707 |
An integer is greater than or equal to 2 is a positive integer.
(Contributed by AV, 3-Nov-2018.)
|
    
  |
| |
| Theorem | eluz4eluz2 9708 |
An integer greater than or equal to 4 is an integer greater than or equal
to 2. (Contributed by AV, 30-May-2023.)
|
    
      |
| |
| Theorem | eluz4nn 9709 |
An integer greater than or equal to 4 is a positive integer. (Contributed
by AV, 30-May-2023.)
|
    
  |
| |
| Theorem | eluzge2nn0 9710 |
If an integer is greater than or equal to 2, then it is a nonnegative
integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV,
3-Nov-2018.)
|
    
  |
| |
| Theorem | eluz2n0 9711 |
An integer greater than or equal to 2 is not 0. (Contributed by AV,
25-May-2020.)
|
       |
| |
| Theorem | uzuzle23 9712 |
An integer in the upper set of integers starting at 3 is element of the
upper set of integers starting at 2. (Contributed by Alexander van der
Vekens, 17-Sep-2018.)
|
    
      |
| |
| Theorem | eluzge3nn 9713 |
If an integer is greater than 3, then it is a positive integer.
(Contributed by Alexander van der Vekens, 17-Sep-2018.)
|
    
  |
| |
| Theorem | uz3m2nn 9714 |
An integer greater than or equal to 3 decreased by 2 is a positive
integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
|
     
   |
| |
| Theorem | 1eluzge0 9715 |
1 is an integer greater than or equal to 0. (Contributed by Alexander van
der Vekens, 8-Jun-2018.)
|
     |
| |
| Theorem | 2eluzge0 9716 |
2 is an integer greater than or equal to 0. (Contributed by Alexander van
der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
|
     |
| |
| Theorem | 2eluzge1 9717 |
2 is an integer greater than or equal to 1. (Contributed by Alexander van
der Vekens, 8-Jun-2018.)
|
     |
| |
| Theorem | uznnssnn 9718 |
The upper integers starting from a natural are a subset of the naturals.
(Contributed by Scott Fenton, 29-Jun-2013.)
|
       |
| |
| Theorem | raluz 9719* |
Restricted universal quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
         
    |
| |
| Theorem | raluz2 9720* |
Restricted universal quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
         
    |
| |
| Theorem | rexuz 9721* |
Restricted existential quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
         
    |
| |
| Theorem | rexuz2 9722* |
Restricted existential quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
         
    |
| |
| Theorem | 2rexuz 9723* |
Double existential quantification in an upper set of integers.
(Contributed by NM, 3-Nov-2005.)
|
   
           |
| |
| Theorem | peano2uz 9724 |
Second Peano postulate for an upper set of integers. (Contributed by NM,
7-Sep-2005.)
|
     
       |
| |
| Theorem | peano2uzs 9725 |
Second Peano postulate for an upper set of integers. (Contributed by
Mario Carneiro, 26-Dec-2013.)
|
         |
| |
| Theorem | peano2uzr 9726 |
Reversed second Peano axiom for upper integers. (Contributed by NM,
2-Jan-2006.)
|
               |
| |
| Theorem | uzaddcl 9727 |
Addition closure law for an upper set of integers. (Contributed by NM,
4-Jun-2006.)
|
        
      |
| |
| Theorem | nn0pzuz 9728 |
The sum of a nonnegative integer and an integer is an integer greater than
or equal to that integer. (Contributed by Alexander van der Vekens,
3-Oct-2018.)
|
    
      |
| |
| Theorem | uzind4 9729* |
Induction on the upper set of integers that starts at an integer .
The first four hypotheses give us the substitution instances we need,
and the last two are the basis and the induction step. (Contributed by
NM, 7-Sep-2005.)
|
                  
                |
| |
| Theorem | uzind4ALT 9730* |
Induction on the upper set of integers that starts at an integer .
The last four hypotheses give us the substitution instances we need; the
first two are the basis and the induction step. Either uzind4 9729 or
uzind4ALT 9730 may be used; see comment for nnind 9072. (Contributed by NM,
7-Sep-2005.) (New usage is discouraged.)
(Proof modification is discouraged.)
|
                                   |
| |
| Theorem | uzind4s 9731* |
Induction on the upper set of integers that starts at an integer ,
using explicit substitution. The hypotheses are the basis and the
induction step. (Contributed by NM, 4-Nov-2005.)
|
   ![]. ].](_drbrack.gif)            ![]. ].](_drbrack.gif)          ![]. ].](_drbrack.gif)   |
| |
| Theorem | uzind4s2 9732* |
Induction on the upper set of integers that starts at an integer ,
using explicit substitution. The hypotheses are the basis and the
induction step. Use this instead of uzind4s 9731 when and
must
be distinct in     ![]. ].](_drbrack.gif) . (Contributed by NM,
16-Nov-2005.)
|
   ![]. ].](_drbrack.gif)          ![]. ].](_drbrack.gif)
    ![]. ].](_drbrack.gif)          ![]. ].](_drbrack.gif)   |
| |
| Theorem | uzind4i 9733* |
Induction on the upper integers that start at . The first four
give us the substitution instances we need, and the last two are the
basis and the induction step. This is a stronger version of uzind4 9729
assuming that holds unconditionally. Notice that
    implies that the lower bound
is an integer
( , see eluzel2 9673). (Contributed by NM, 4-Sep-2005.)
(Revised by AV, 13-Jul-2022.)
|
                      
          |
| |
| Theorem | indstr 9734* |
Strong Mathematical Induction for positive integers (inference schema).
(Contributed by NM, 17-Aug-2001.)
|
    
  

     |
| |
| Theorem | infrenegsupex 9735* |
The infimum of a set of reals is the negative of the supremum of
the negatives of its elements. (Contributed by Jim Kingdon,
14-Jan-2022.)
|
   
 
       inf             |
| |
| Theorem | supinfneg 9736* |
If a set of real numbers has a least upper bound, the set of the
negation of those numbers has a greatest lower bound. For a theorem
which is similar but only for the boundedness part, see ublbneg 9754.
(Contributed by Jim Kingdon, 15-Jan-2022.)
|
   
 
              

        |
| |
| Theorem | infsupneg 9737* |
If a set of real numbers has a greatest lower bound, the set of the
negation of those numbers has a least upper bound. To go in the other
direction see supinfneg 9736. (Contributed by Jim Kingdon,
15-Jan-2022.)
|
   
 
              

        |
| |
| Theorem | supminfex 9738* |
A supremum is the negation of the infimum of that set's image under
negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
|
   
 
         
 inf        |
| |
| Theorem | infregelbex 9739* |
Any lower bound of a set of real numbers with an infimum is less than or
equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.)
|
   
 
          inf       |
| |
| Theorem | eluznn0 9740 |
Membership in a nonnegative upper set of integers implies membership in
.
(Contributed by Paul Chapman, 22-Jun-2011.)
|
      
  |
| |
| Theorem | eluznn 9741 |
Membership in a positive upper set of integers implies membership in
. (Contributed
by JJ, 1-Oct-2018.)
|
         |
| |
| Theorem | eluz2b1 9742 |
Two ways to say "an integer greater than or equal to 2".
(Contributed by
Paul Chapman, 23-Nov-2012.)
|
         |
| |
| Theorem | eluz2gt1 9743 |
An integer greater than or equal to 2 is greater than 1. (Contributed by
AV, 24-May-2020.)
|
    
  |
| |
| Theorem | eluz2b2 9744 |
Two ways to say "an integer greater than or equal to 2".
(Contributed by
Paul Chapman, 23-Nov-2012.)
|
         |
| |
| Theorem | eluz2b3 9745 |
Two ways to say "an integer greater than or equal to 2".
(Contributed by
Paul Chapman, 23-Nov-2012.)
|
         |
| |
| Theorem | uz2m1nn 9746 |
One less than an integer greater than or equal to 2 is a positive integer.
(Contributed by Paul Chapman, 17-Nov-2012.)
|
     
   |
| |
| Theorem | 1nuz2 9747 |
1 is not in     . (Contributed by Paul Chapman,
21-Nov-2012.)
|
     |
| |
| Theorem | elnn1uz2 9748 |
A positive integer is either 1 or greater than or equal to 2.
(Contributed by Paul Chapman, 17-Nov-2012.)
|
 
       |
| |
| Theorem | uz2mulcl 9749 |
Closure of multiplication of integers greater than or equal to 2.
(Contributed by Paul Chapman, 26-Oct-2012.)
|
           

      |
| |
| Theorem | indstr2 9750* |
Strong Mathematical Induction for positive integers (inference schema).
The first two hypotheses give us the substitution instances we need; the
last two are the basis and the induction step. (Contributed by Paul
Chapman, 21-Nov-2012.)
|
    
   
   
 


  
  |
| |
| Theorem | eluzdc 9751 |
Membership of an integer in an upper set of integers is decidable.
(Contributed by Jim Kingdon, 18-Apr-2020.)
|
   DECID
      |
| |
| Theorem | elnn0dc 9752 |
Membership of an integer in is decidable. (Contributed by Jim
Kingdon, 8-Oct-2024.)
|
 DECID   |
| |
| Theorem | elnndc 9753 |
Membership of an integer in is decidable. (Contributed by Jim
Kingdon, 17-Oct-2024.)
|
 DECID   |
| |
| Theorem | ublbneg 9754* |
The image under negation of a bounded-above set of reals is bounded
below. For a theorem which is similar but also adds that the bounds
need to be the tightest possible, see supinfneg 9736. (Contributed by
Paul Chapman, 21-Mar-2011.)
|
        
  |
| |
| Theorem | eqreznegel 9755* |
Two ways to express the image under negation of a set of integers.
(Contributed by Paul Chapman, 21-Mar-2011.)
|
   
     |
| |
| Theorem | negm 9756* |
The image under negation of an inhabited set of reals is inhabited.
(Contributed by Jim Kingdon, 10-Apr-2020.)
|
    
     |
| |
| Theorem | lbzbi 9757* |
If a set of reals is bounded below, it is bounded below by an integer.
(Contributed by Paul Chapman, 21-Mar-2011.)
|
         |
| |
| Theorem | nn01to3 9758 |
A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed
by Alexander van der Vekens, 13-Sep-2018.)
|
 
 
   |
| |
| Theorem | nn0ge2m1nnALT 9759 |
Alternate proof of nn0ge2m1nn 9375: If a nonnegative integer is greater
than or equal to two, the integer decreased by 1 is a positive integer.
This version is proved using eluz2 9674, a theorem for upper sets of
integers, which are defined later than the positive and nonnegative
integers. This proof is, however, much shorter than the proof of
nn0ge2m1nn 9375. (Contributed by Alexander van der Vekens,
1-Aug-2018.)
(New usage is discouraged.) (Proof modification is discouraged.)
|
 
     |
| |
| 4.4.12 Rational numbers (as a subset of complex
numbers)
|
| |
| Syntax | cq 9760 |
Extend class notation to include the class of rationals.
|
 |
| |
| Definition | df-q 9761 |
Define the set of rational numbers. Based on definition of rationals in
[Apostol] p. 22. See elq 9763
for the relation "is rational". (Contributed
by NM, 8-Jan-2002.)
|
     |
| |
| Theorem | divfnzn 9762 |
Division restricted to is a function. Given
excluded
middle, it would be easy to prove this for     .
The key difference is that an element of is apart from zero,
whereas being an element of
  implies being not equal to
zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
|
      |
| |
| Theorem | elq 9763* |
Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.)
(Revised by Mario Carneiro, 28-Jan-2014.)
|
 
     |
| |
| Theorem | qmulz 9764* |
If is rational, then
some integer multiple of it is an integer.
(Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro,
22-Jul-2014.)
|
  

  |
| |
| Theorem | znq 9765 |
The ratio of an integer and a positive integer is a rational number.
(Contributed by NM, 12-Jan-2002.)
|
    
  |
| |
| Theorem | qre 9766 |
A rational number is a real number. (Contributed by NM,
14-Nov-2002.)
|
   |
| |
| Theorem | zq 9767 |
An integer is a rational number. (Contributed by NM, 9-Jan-2002.)
|
   |
| |
| Theorem | zssq 9768 |
The integers are a subset of the rationals. (Contributed by NM,
9-Jan-2002.)
|
 |
| |
| Theorem | nn0ssq 9769 |
The nonnegative integers are a subset of the rationals. (Contributed by
NM, 31-Jul-2004.)
|
 |
| |
| Theorem | nnssq 9770 |
The positive integers are a subset of the rationals. (Contributed by NM,
31-Jul-2004.)
|
 |
| |
| Theorem | qssre 9771 |
The rationals are a subset of the reals. (Contributed by NM,
9-Jan-2002.)
|
 |
| |
| Theorem | qsscn 9772 |
The rationals are a subset of the complex numbers. (Contributed by NM,
2-Aug-2004.)
|
 |
| |
| Theorem | qex 9773 |
The set of rational numbers exists. (Contributed by NM, 30-Jul-2004.)
(Revised by Mario Carneiro, 17-Nov-2014.)
|
 |
| |
| Theorem | nnq 9774 |
A positive integer is rational. (Contributed by NM, 17-Nov-2004.)
|
   |
| |
| Theorem | qcn 9775 |
A rational number is a complex number. (Contributed by NM,
2-Aug-2004.)
|
   |
| |
| Theorem | qaddcl 9776 |
Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
|
    
  |
| |
| Theorem | qnegcl 9777 |
Closure law for the negative of a rational. (Contributed by NM,
2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.)
|
    |
| |
| Theorem | qmulcl 9778 |
Closure of multiplication of rationals. (Contributed by NM,
1-Aug-2004.)
|
    
  |
| |
| Theorem | qsubcl 9779 |
Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.)
|
    
  |
| |
| Theorem | qapne 9780 |
Apartness is equivalent to not equal for rationals. (Contributed by Jim
Kingdon, 20-Mar-2020.)
|
    #    |
| |
| Theorem | qltlen 9781 |
Rational 'Less than' expressed in terms of 'less than or equal to'. Also
see ltleap 8725 which is a similar result for real numbers.
(Contributed by
Jim Kingdon, 11-Oct-2021.)
|
         |
| |
| Theorem | qlttri2 9782 |
Apartness is equivalent to not equal for rationals. (Contributed by Jim
Kingdon, 9-Nov-2021.)
|
         |
| |
| Theorem | qreccl 9783 |
Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
|
  
    |
| |
| Theorem | qdivcl 9784 |
Closure of division of rationals. (Contributed by NM, 3-Aug-2004.)
|
    
  |
| |
| Theorem | qrevaddcl 9785 |
Reverse closure law for addition of rationals. (Contributed by NM,
2-Aug-2004.)
|
    
    |
| |
| Theorem | nnrecq 9786 |
The reciprocal of a positive integer is rational. (Contributed by NM,
17-Nov-2004.)
|
  
  |
| |
| Theorem | irradd 9787 |
The sum of an irrational number and a rational number is irrational.
(Contributed by NM, 7-Nov-2008.)
|
  
   
    |
| |
| Theorem | irrmul 9788 |
The product of a real which is not rational with a nonzero rational is not
rational. Note that by "not rational" we mean the negation of
"is
rational" (whereas "irrational" is often defined to mean
apart from any
rational number - given excluded middle these two definitions would be
equivalent). For a similar theorem with irrational in place of not
rational, see irrmulap 9789. (Contributed by NM, 7-Nov-2008.)
|
  
  

    |
| |
| Theorem | irrmulap 9789* |
The product of an irrational with a nonzero rational is irrational. By
irrational we mean apart from any rational number. For a similar
theorem with not rational in place of irrational, see irrmul 9788.
(Contributed by Jim Kingdon, 25-Aug-2025.)
|
    #           #   |
| |
| Theorem | elpq 9790* |
A positive rational is the quotient of two positive integers.
(Contributed by AV, 29-Dec-2022.)
|
         |
| |
| Theorem | elpqb 9791* |
A class is a positive rational iff it is the quotient of two positive
integers. (Contributed by AV, 30-Dec-2022.)
|
         |
| |
| 4.4.13 Complex numbers as pairs of
reals
|
| |
| Theorem | cnref1o 9792* |
There is a natural one-to-one mapping from 
 to ,
where we map    to     . In our
construction of the complex numbers, this is in fact our
definition of
(see df-c 7951), but in the axiomatic treatment we can only
show
that there is the expected mapping between these two sets. (Contributed
by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro,
17-Feb-2014.)
|
   
          |
| |
| Theorem | addex 9793 |
The addition operation is a set. (Contributed by NM, 19-Oct-2004.)
(Revised by Mario Carneiro, 17-Nov-2014.)
|
 |
| |
| Theorem | mulex 9794 |
The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.)
(Revised by Mario Carneiro, 17-Nov-2014.)
|
 |
| |
| 4.5 Order sets
|
| |
| 4.5.1 Positive reals (as a subset of complex
numbers)
|
| |
| Syntax | crp 9795 |
Extend class notation to include the class of positive reals.
|
 |
| |
| Definition | df-rp 9796 |
Define the set of positive reals. Definition of positive numbers in
[Apostol] p. 20. (Contributed by NM,
27-Oct-2007.)
|
   |
| |
| Theorem | elrp 9797 |
Membership in the set of positive reals. (Contributed by NM,
27-Oct-2007.)
|
 
   |
| |
| Theorem | elrpii 9798 |
Membership in the set of positive reals. (Contributed by NM,
23-Feb-2008.)
|
 |
| |
| Theorem | 1rp 9799 |
1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.)
|
 |
| |
| Theorem | 2rp 9800 |
2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
|
 |