ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddval Unicode version

Theorem xaddval 9658
Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddval  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) ) )

Proof of Theorem xaddval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7836 . . . . . 6  |-  0  e.  RR*
21a1i 9 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  0  e.  RR* )
3 pnfxr 7842 . . . . . 6  |- +oo  e.  RR*
43a1i 9 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> +oo  e.  RR* )
5 xrmnfdc 9656 . . . . . 6  |-  ( B  e.  RR*  -> DECID  B  = -oo )
65adantl 275 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> DECID  B  = -oo )
72, 4, 6ifcldcd 3512 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = -oo ,  0 , +oo )  e.  RR* )
87adantr 274 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  A  = +oo )  ->  if ( B  = -oo ,  0 , +oo )  e. 
RR* )
9 mnfxr 7846 . . . . . . 7  |- -oo  e.  RR*
109a1i 9 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> -oo  e.  RR* )
11 xrpnfdc 9655 . . . . . . 7  |-  ( B  e.  RR*  -> DECID  B  = +oo )
1211adantl 275 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> DECID  B  = +oo )
132, 10, 12ifcldcd 3512 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo ,  0 , -oo )  e.  RR* )
1413ad2antrr 480 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  if ( B  = +oo ,  0 , -oo )  e.  RR* )
153a1i 9 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  B  = +oo )  -> +oo  e.  RR* )
169a1i 9 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  B  = -oo )  -> -oo  e.  RR* )
17 simp-4r 532 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  A  = +oo )
18 simpl 108 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  e.  RR* )
1918ad4antr 486 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  e.  RR* )
20 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  A  = -oo )
2120neqned 2316 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  =/= -oo )
22 xrnemnf 9594 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )
2322biimpi 119 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A  e.  RR  \/  A  = +oo )
)
2419, 21, 23syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( A  e.  RR  \/  A  = +oo ) )
2517, 24ecased 1328 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  e.  RR )
26 simplr 520 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  B  = +oo )
27 simpr 109 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
2827ad4antr 486 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  B  e.  RR* )
29 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  B  = -oo )
3029neqned 2316 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  B  =/= -oo )
31 xrnemnf 9594 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  <->  ( B  e.  RR  \/  B  = +oo ) )
3231biimpi 119 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B  e.  RR  \/  B  = +oo )
)
3328, 30, 32syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( B  e.  RR  \/  B  = +oo ) )
3426, 33ecased 1328 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  B  e.  RR )
3525, 34readdcld 7819 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( A  +  B
)  e.  RR )
3635rexrd 7839 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( A  +  B
)  e.  RR* )
376ad3antrrr 484 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  -> DECID  B  = -oo )
3816, 36, 37ifcldadc 3506 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  ->  if ( B  = -oo , -oo ,  ( A  +  B ) )  e.  RR* )
3912ad2antrr 480 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  -> DECID  B  = +oo )
4015, 38, 39ifcldadc 3506 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  e.  RR* )
41 xrmnfdc 9656 . . . . 5  |-  ( A  e.  RR*  -> DECID  A  = -oo )
4241ad2antrr 480 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  -> DECID 
A  = -oo )
4314, 40, 42ifcldadc 3506 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  ->  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) )  e.  RR* )
44 xrpnfdc 9655 . . . 4  |-  ( A  e.  RR*  -> DECID  A  = +oo )
4544adantr 274 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> DECID  A  = +oo )
468, 43, 45ifcldadc 3506 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )  e.  RR* )
47 simpl 108 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  x  =  A )
4847eqeq1d 2149 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  = +oo  <->  A  = +oo ) )
49 simpr 109 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  y  =  B )
5049eqeq1d 2149 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  = -oo  <->  B  = -oo ) )
5150ifbid 3498 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = -oo ,  0 , +oo )  =  if ( B  = -oo ,  0 , +oo ) )
5247eqeq1d 2149 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  = -oo  <->  A  = -oo ) )
5349eqeq1d 2149 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  = +oo  <->  B  = +oo ) )
5453ifbid 3498 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = +oo ,  0 , -oo )  =  if ( B  = +oo ,  0 , -oo ) )
55 oveq12 5791 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  +  y )  =  ( A  +  B ) )
5650, 55ifbieq2d 3501 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = -oo , -oo , 
( x  +  y ) )  =  if ( B  = -oo , -oo ,  ( A  +  B ) ) )
5753, 56ifbieq2d 3501 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )
5852, 54, 57ifbieq12d 3503 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) )  =  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )
5948, 51, 58ifbieq12d 3503 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  =  if ( A  = +oo ,  if ( B  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo , 
0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) ) )
60 df-xadd 9590 . . 3  |-  +e 
=  ( x  e. 
RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
6159, 60ovmpoga 5908 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) )  e.  RR* )  ->  ( A +e
B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) ) )
6246, 61mpd3an3 1317 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 1481    =/= wne 2309   ifcif 3479  (class class class)co 5782   RRcr 7643   0cc0 7644    + caddc 7647   +oocpnf 7821   -oocmnf 7822   RR*cxr 7823   +ecxad 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1re 7738  ax-addrcl 7741  ax-rnegex 7753
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-xadd 9590
This theorem is referenced by:  xaddpnf1  9659  xaddpnf2  9660  xaddmnf1  9661  xaddmnf2  9662  pnfaddmnf  9663  mnfaddpnf  9664  rexadd  9665
  Copyright terms: Public domain W3C validator