Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddval | Unicode version |
Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 7966 | . . . . . 6 | |
2 | 1 | a1i 9 | . . . . 5 |
3 | pnfxr 7972 | . . . . . 6 | |
4 | 3 | a1i 9 | . . . . 5 |
5 | xrmnfdc 9800 | . . . . . 6 DECID | |
6 | 5 | adantl 275 | . . . . 5 DECID |
7 | 2, 4, 6 | ifcldcd 3561 | . . . 4 |
8 | 7 | adantr 274 | . . 3 |
9 | mnfxr 7976 | . . . . . . 7 | |
10 | 9 | a1i 9 | . . . . . 6 |
11 | xrpnfdc 9799 | . . . . . . 7 DECID | |
12 | 11 | adantl 275 | . . . . . 6 DECID |
13 | 2, 10, 12 | ifcldcd 3561 | . . . . 5 |
14 | 13 | ad2antrr 485 | . . . 4 |
15 | 3 | a1i 9 | . . . . 5 |
16 | 9 | a1i 9 | . . . . . 6 |
17 | simp-4r 537 | . . . . . . . . 9 | |
18 | simpl 108 | . . . . . . . . . . 11 | |
19 | 18 | ad4antr 491 | . . . . . . . . . 10 |
20 | simpllr 529 | . . . . . . . . . . 11 | |
21 | 20 | neqned 2347 | . . . . . . . . . 10 |
22 | xrnemnf 9734 | . . . . . . . . . . 11 | |
23 | 22 | biimpi 119 | . . . . . . . . . 10 |
24 | 19, 21, 23 | syl2anc 409 | . . . . . . . . 9 |
25 | 17, 24 | ecased 1344 | . . . . . . . 8 |
26 | simplr 525 | . . . . . . . . 9 | |
27 | simpr 109 | . . . . . . . . . . 11 | |
28 | 27 | ad4antr 491 | . . . . . . . . . 10 |
29 | simpr 109 | . . . . . . . . . . 11 | |
30 | 29 | neqned 2347 | . . . . . . . . . 10 |
31 | xrnemnf 9734 | . . . . . . . . . . 11 | |
32 | 31 | biimpi 119 | . . . . . . . . . 10 |
33 | 28, 30, 32 | syl2anc 409 | . . . . . . . . 9 |
34 | 26, 33 | ecased 1344 | . . . . . . . 8 |
35 | 25, 34 | readdcld 7949 | . . . . . . 7 |
36 | 35 | rexrd 7969 | . . . . . 6 |
37 | 6 | ad3antrrr 489 | . . . . . 6 DECID |
38 | 16, 36, 37 | ifcldadc 3555 | . . . . 5 |
39 | 12 | ad2antrr 485 | . . . . 5 DECID |
40 | 15, 38, 39 | ifcldadc 3555 | . . . 4 |
41 | xrmnfdc 9800 | . . . . 5 DECID | |
42 | 41 | ad2antrr 485 | . . . 4 DECID |
43 | 14, 40, 42 | ifcldadc 3555 | . . 3 |
44 | xrpnfdc 9799 | . . . 4 DECID | |
45 | 44 | adantr 274 | . . 3 DECID |
46 | 8, 43, 45 | ifcldadc 3555 | . 2 |
47 | simpl 108 | . . . . 5 | |
48 | 47 | eqeq1d 2179 | . . . 4 |
49 | simpr 109 | . . . . . 6 | |
50 | 49 | eqeq1d 2179 | . . . . 5 |
51 | 50 | ifbid 3547 | . . . 4 |
52 | 47 | eqeq1d 2179 | . . . . 5 |
53 | 49 | eqeq1d 2179 | . . . . . 6 |
54 | 53 | ifbid 3547 | . . . . 5 |
55 | oveq12 5862 | . . . . . . 7 | |
56 | 50, 55 | ifbieq2d 3550 | . . . . . 6 |
57 | 53, 56 | ifbieq2d 3550 | . . . . 5 |
58 | 52, 54, 57 | ifbieq12d 3552 | . . . 4 |
59 | 48, 51, 58 | ifbieq12d 3552 | . . 3 |
60 | df-xadd 9730 | . . 3 | |
61 | 59, 60 | ovmpoga 5982 | . 2 |
62 | 46, 61 | mpd3an3 1333 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wcel 2141 wne 2340 cif 3526 (class class class)co 5853 cr 7773 cc0 7774 caddc 7777 cpnf 7951 cmnf 7952 cxr 7953 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-xadd 9730 |
This theorem is referenced by: xaddpnf1 9803 xaddpnf2 9804 xaddmnf1 9805 xaddmnf2 9806 pnfaddmnf 9807 mnfaddpnf 9808 rexadd 9809 |
Copyright terms: Public domain | W3C validator |