| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddval | Unicode version | ||
| Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8193 |
. . . . . 6
| |
| 2 | 1 | a1i 9 |
. . . . 5
|
| 3 | pnfxr 8199 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | xrmnfdc 10039 |
. . . . . 6
| |
| 6 | 5 | adantl 277 |
. . . . 5
|
| 7 | 2, 4, 6 | ifcldcd 3640 |
. . . 4
|
| 8 | 7 | adantr 276 |
. . 3
|
| 9 | mnfxr 8203 |
. . . . . . 7
| |
| 10 | 9 | a1i 9 |
. . . . . 6
|
| 11 | xrpnfdc 10038 |
. . . . . . 7
| |
| 12 | 11 | adantl 277 |
. . . . . 6
|
| 13 | 2, 10, 12 | ifcldcd 3640 |
. . . . 5
|
| 14 | 13 | ad2antrr 488 |
. . . 4
|
| 15 | 3 | a1i 9 |
. . . . 5
|
| 16 | 9 | a1i 9 |
. . . . . 6
|
| 17 | simp-4r 542 |
. . . . . . . . 9
| |
| 18 | simpl 109 |
. . . . . . . . . . 11
| |
| 19 | 18 | ad4antr 494 |
. . . . . . . . . 10
|
| 20 | simpllr 534 |
. . . . . . . . . . 11
| |
| 21 | 20 | neqned 2407 |
. . . . . . . . . 10
|
| 22 | xrnemnf 9973 |
. . . . . . . . . . 11
| |
| 23 | 22 | biimpi 120 |
. . . . . . . . . 10
|
| 24 | 19, 21, 23 | syl2anc 411 |
. . . . . . . . 9
|
| 25 | 17, 24 | ecased 1383 |
. . . . . . . 8
|
| 26 | simplr 528 |
. . . . . . . . 9
| |
| 27 | simpr 110 |
. . . . . . . . . . 11
| |
| 28 | 27 | ad4antr 494 |
. . . . . . . . . 10
|
| 29 | simpr 110 |
. . . . . . . . . . 11
| |
| 30 | 29 | neqned 2407 |
. . . . . . . . . 10
|
| 31 | xrnemnf 9973 |
. . . . . . . . . . 11
| |
| 32 | 31 | biimpi 120 |
. . . . . . . . . 10
|
| 33 | 28, 30, 32 | syl2anc 411 |
. . . . . . . . 9
|
| 34 | 26, 33 | ecased 1383 |
. . . . . . . 8
|
| 35 | 25, 34 | readdcld 8176 |
. . . . . . 7
|
| 36 | 35 | rexrd 8196 |
. . . . . 6
|
| 37 | 6 | ad3antrrr 492 |
. . . . . 6
|
| 38 | 16, 36, 37 | ifcldadc 3632 |
. . . . 5
|
| 39 | 12 | ad2antrr 488 |
. . . . 5
|
| 40 | 15, 38, 39 | ifcldadc 3632 |
. . . 4
|
| 41 | xrmnfdc 10039 |
. . . . 5
| |
| 42 | 41 | ad2antrr 488 |
. . . 4
|
| 43 | 14, 40, 42 | ifcldadc 3632 |
. . 3
|
| 44 | xrpnfdc 10038 |
. . . 4
| |
| 45 | 44 | adantr 276 |
. . 3
|
| 46 | 8, 43, 45 | ifcldadc 3632 |
. 2
|
| 47 | simpl 109 |
. . . . 5
| |
| 48 | 47 | eqeq1d 2238 |
. . . 4
|
| 49 | simpr 110 |
. . . . . 6
| |
| 50 | 49 | eqeq1d 2238 |
. . . . 5
|
| 51 | 50 | ifbid 3624 |
. . . 4
|
| 52 | 47 | eqeq1d 2238 |
. . . . 5
|
| 53 | 49 | eqeq1d 2238 |
. . . . . 6
|
| 54 | 53 | ifbid 3624 |
. . . . 5
|
| 55 | oveq12 6010 |
. . . . . . 7
| |
| 56 | 50, 55 | ifbieq2d 3627 |
. . . . . 6
|
| 57 | 53, 56 | ifbieq2d 3627 |
. . . . 5
|
| 58 | 52, 54, 57 | ifbieq12d 3629 |
. . . 4
|
| 59 | 48, 51, 58 | ifbieq12d 3629 |
. . 3
|
| 60 | df-xadd 9969 |
. . 3
| |
| 61 | 59, 60 | ovmpoga 6134 |
. 2
|
| 62 | 46, 61 | mpd3an3 1372 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-rnegex 8108 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-xadd 9969 |
| This theorem is referenced by: xaddpnf1 10042 xaddpnf2 10043 xaddmnf1 10044 xaddmnf2 10045 pnfaddmnf 10046 mnfaddpnf 10047 rexadd 10048 |
| Copyright terms: Public domain | W3C validator |