Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddval | Unicode version |
Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 7945 | . . . . . 6 | |
2 | 1 | a1i 9 | . . . . 5 |
3 | pnfxr 7951 | . . . . . 6 | |
4 | 3 | a1i 9 | . . . . 5 |
5 | xrmnfdc 9779 | . . . . . 6 DECID | |
6 | 5 | adantl 275 | . . . . 5 DECID |
7 | 2, 4, 6 | ifcldcd 3555 | . . . 4 |
8 | 7 | adantr 274 | . . 3 |
9 | mnfxr 7955 | . . . . . . 7 | |
10 | 9 | a1i 9 | . . . . . 6 |
11 | xrpnfdc 9778 | . . . . . . 7 DECID | |
12 | 11 | adantl 275 | . . . . . 6 DECID |
13 | 2, 10, 12 | ifcldcd 3555 | . . . . 5 |
14 | 13 | ad2antrr 480 | . . . 4 |
15 | 3 | a1i 9 | . . . . 5 |
16 | 9 | a1i 9 | . . . . . 6 |
17 | simp-4r 532 | . . . . . . . . 9 | |
18 | simpl 108 | . . . . . . . . . . 11 | |
19 | 18 | ad4antr 486 | . . . . . . . . . 10 |
20 | simpllr 524 | . . . . . . . . . . 11 | |
21 | 20 | neqned 2343 | . . . . . . . . . 10 |
22 | xrnemnf 9713 | . . . . . . . . . . 11 | |
23 | 22 | biimpi 119 | . . . . . . . . . 10 |
24 | 19, 21, 23 | syl2anc 409 | . . . . . . . . 9 |
25 | 17, 24 | ecased 1339 | . . . . . . . 8 |
26 | simplr 520 | . . . . . . . . 9 | |
27 | simpr 109 | . . . . . . . . . . 11 | |
28 | 27 | ad4antr 486 | . . . . . . . . . 10 |
29 | simpr 109 | . . . . . . . . . . 11 | |
30 | 29 | neqned 2343 | . . . . . . . . . 10 |
31 | xrnemnf 9713 | . . . . . . . . . . 11 | |
32 | 31 | biimpi 119 | . . . . . . . . . 10 |
33 | 28, 30, 32 | syl2anc 409 | . . . . . . . . 9 |
34 | 26, 33 | ecased 1339 | . . . . . . . 8 |
35 | 25, 34 | readdcld 7928 | . . . . . . 7 |
36 | 35 | rexrd 7948 | . . . . . 6 |
37 | 6 | ad3antrrr 484 | . . . . . 6 DECID |
38 | 16, 36, 37 | ifcldadc 3549 | . . . . 5 |
39 | 12 | ad2antrr 480 | . . . . 5 DECID |
40 | 15, 38, 39 | ifcldadc 3549 | . . . 4 |
41 | xrmnfdc 9779 | . . . . 5 DECID | |
42 | 41 | ad2antrr 480 | . . . 4 DECID |
43 | 14, 40, 42 | ifcldadc 3549 | . . 3 |
44 | xrpnfdc 9778 | . . . 4 DECID | |
45 | 44 | adantr 274 | . . 3 DECID |
46 | 8, 43, 45 | ifcldadc 3549 | . 2 |
47 | simpl 108 | . . . . 5 | |
48 | 47 | eqeq1d 2174 | . . . 4 |
49 | simpr 109 | . . . . . 6 | |
50 | 49 | eqeq1d 2174 | . . . . 5 |
51 | 50 | ifbid 3541 | . . . 4 |
52 | 47 | eqeq1d 2174 | . . . . 5 |
53 | 49 | eqeq1d 2174 | . . . . . 6 |
54 | 53 | ifbid 3541 | . . . . 5 |
55 | oveq12 5851 | . . . . . . 7 | |
56 | 50, 55 | ifbieq2d 3544 | . . . . . 6 |
57 | 53, 56 | ifbieq2d 3544 | . . . . 5 |
58 | 52, 54, 57 | ifbieq12d 3546 | . . . 4 |
59 | 48, 51, 58 | ifbieq12d 3546 | . . 3 |
60 | df-xadd 9709 | . . 3 | |
61 | 59, 60 | ovmpoga 5971 | . 2 |
62 | 46, 61 | mpd3an3 1328 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wne 2336 cif 3520 (class class class)co 5842 cr 7752 cc0 7753 caddc 7756 cpnf 7930 cmnf 7931 cxr 7932 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-xadd 9709 |
This theorem is referenced by: xaddpnf1 9782 xaddpnf2 9783 xaddmnf1 9784 xaddmnf2 9785 pnfaddmnf 9786 mnfaddpnf 9787 rexadd 9788 |
Copyright terms: Public domain | W3C validator |