ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddval Unicode version

Theorem xaddval 9967
Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddval  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) ) )

Proof of Theorem xaddval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8119 . . . . . 6  |-  0  e.  RR*
21a1i 9 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  0  e.  RR* )
3 pnfxr 8125 . . . . . 6  |- +oo  e.  RR*
43a1i 9 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> +oo  e.  RR* )
5 xrmnfdc 9965 . . . . . 6  |-  ( B  e.  RR*  -> DECID  B  = -oo )
65adantl 277 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> DECID  B  = -oo )
72, 4, 6ifcldcd 3608 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = -oo ,  0 , +oo )  e.  RR* )
87adantr 276 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  A  = +oo )  ->  if ( B  = -oo ,  0 , +oo )  e. 
RR* )
9 mnfxr 8129 . . . . . . 7  |- -oo  e.  RR*
109a1i 9 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> -oo  e.  RR* )
11 xrpnfdc 9964 . . . . . . 7  |-  ( B  e.  RR*  -> DECID  B  = +oo )
1211adantl 277 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> DECID  B  = +oo )
132, 10, 12ifcldcd 3608 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo ,  0 , -oo )  e.  RR* )
1413ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  A  = -oo )  ->  if ( B  = +oo ,  0 , -oo )  e.  RR* )
153a1i 9 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  B  = +oo )  -> +oo  e.  RR* )
169a1i 9 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  B  = -oo )  -> -oo  e.  RR* )
17 simp-4r 542 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  A  = +oo )
18 simpl 109 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  e.  RR* )
1918ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  e.  RR* )
20 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  A  = -oo )
2120neqned 2383 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  =/= -oo )
22 xrnemnf 9899 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )
2322biimpi 120 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A  e.  RR  \/  A  = +oo )
)
2419, 21, 23syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( A  e.  RR  \/  A  = +oo ) )
2517, 24ecased 1362 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  A  e.  RR )
26 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  B  = +oo )
27 simpr 110 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
2827ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  B  e.  RR* )
29 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  -.  B  = -oo )
3029neqned 2383 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  B  =/= -oo )
31 xrnemnf 9899 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  <->  ( B  e.  RR  \/  B  = +oo ) )
3231biimpi 120 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B  e.  RR  \/  B  = +oo )
)
3328, 30, 32syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( B  e.  RR  \/  B  = +oo ) )
3426, 33ecased 1362 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  B  e.  RR )
3525, 34readdcld 8102 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( A  +  B
)  e.  RR )
3635rexrd 8122 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  /\  -.  B  = -oo )  ->  ( A  +  B
)  e.  RR* )
376ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  -> DECID  B  = -oo )
3816, 36, 37ifcldadc 3600 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  /\  -.  B  = +oo )  ->  if ( B  = -oo , -oo ,  ( A  +  B ) )  e.  RR* )
3912ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  -> DECID  B  = +oo )
4015, 38, 39ifcldadc 3600 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  /\  -.  A  = -oo )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  e.  RR* )
41 xrmnfdc 9965 . . . . 5  |-  ( A  e.  RR*  -> DECID  A  = -oo )
4241ad2antrr 488 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  -> DECID 
A  = -oo )
4314, 40, 42ifcldadc 3600 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  A  = +oo )  ->  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) )  e.  RR* )
44 xrpnfdc 9964 . . . 4  |-  ( A  e.  RR*  -> DECID  A  = +oo )
4544adantr 276 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> DECID  A  = +oo )
468, 43, 45ifcldadc 3600 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )  e.  RR* )
47 simpl 109 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  x  =  A )
4847eqeq1d 2214 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  = +oo  <->  A  = +oo ) )
49 simpr 110 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  y  =  B )
5049eqeq1d 2214 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  = -oo  <->  B  = -oo ) )
5150ifbid 3592 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = -oo ,  0 , +oo )  =  if ( B  = -oo ,  0 , +oo ) )
5247eqeq1d 2214 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  = -oo  <->  A  = -oo ) )
5349eqeq1d 2214 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  = +oo  <->  B  = +oo ) )
5453ifbid 3592 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = +oo ,  0 , -oo )  =  if ( B  = +oo ,  0 , -oo ) )
55 oveq12 5953 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  +  y )  =  ( A  +  B ) )
5650, 55ifbieq2d 3595 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = -oo , -oo , 
( x  +  y ) )  =  if ( B  = -oo , -oo ,  ( A  +  B ) ) )
5753, 56ifbieq2d 3595 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )
5852, 54, 57ifbieq12d 3597 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) )  =  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )
5948, 51, 58ifbieq12d 3597 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  =  if ( A  = +oo ,  if ( B  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo , 
0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) ) )
60 df-xadd 9895 . . 3  |-  +e 
=  ( x  e. 
RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
6159, 60ovmpoga 6075 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) )  e.  RR* )  ->  ( A +e
B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) ) )
6246, 61mpd3an3 1351 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176    =/= wne 2376   ifcif 3571  (class class class)co 5944   RRcr 7924   0cc0 7925    + caddc 7928   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106   +ecxad 9892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022  ax-rnegex 8034
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-xadd 9895
This theorem is referenced by:  xaddpnf1  9968  xaddpnf2  9969  xaddmnf1  9970  xaddmnf2  9971  pnfaddmnf  9972  mnfaddpnf  9973  rexadd  9974
  Copyright terms: Public domain W3C validator