| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddval | Unicode version | ||
| Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8073 |
. . . . . 6
| |
| 2 | 1 | a1i 9 |
. . . . 5
|
| 3 | pnfxr 8079 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | xrmnfdc 9918 |
. . . . . 6
| |
| 6 | 5 | adantl 277 |
. . . . 5
|
| 7 | 2, 4, 6 | ifcldcd 3597 |
. . . 4
|
| 8 | 7 | adantr 276 |
. . 3
|
| 9 | mnfxr 8083 |
. . . . . . 7
| |
| 10 | 9 | a1i 9 |
. . . . . 6
|
| 11 | xrpnfdc 9917 |
. . . . . . 7
| |
| 12 | 11 | adantl 277 |
. . . . . 6
|
| 13 | 2, 10, 12 | ifcldcd 3597 |
. . . . 5
|
| 14 | 13 | ad2antrr 488 |
. . . 4
|
| 15 | 3 | a1i 9 |
. . . . 5
|
| 16 | 9 | a1i 9 |
. . . . . 6
|
| 17 | simp-4r 542 |
. . . . . . . . 9
| |
| 18 | simpl 109 |
. . . . . . . . . . 11
| |
| 19 | 18 | ad4antr 494 |
. . . . . . . . . 10
|
| 20 | simpllr 534 |
. . . . . . . . . . 11
| |
| 21 | 20 | neqned 2374 |
. . . . . . . . . 10
|
| 22 | xrnemnf 9852 |
. . . . . . . . . . 11
| |
| 23 | 22 | biimpi 120 |
. . . . . . . . . 10
|
| 24 | 19, 21, 23 | syl2anc 411 |
. . . . . . . . 9
|
| 25 | 17, 24 | ecased 1360 |
. . . . . . . 8
|
| 26 | simplr 528 |
. . . . . . . . 9
| |
| 27 | simpr 110 |
. . . . . . . . . . 11
| |
| 28 | 27 | ad4antr 494 |
. . . . . . . . . 10
|
| 29 | simpr 110 |
. . . . . . . . . . 11
| |
| 30 | 29 | neqned 2374 |
. . . . . . . . . 10
|
| 31 | xrnemnf 9852 |
. . . . . . . . . . 11
| |
| 32 | 31 | biimpi 120 |
. . . . . . . . . 10
|
| 33 | 28, 30, 32 | syl2anc 411 |
. . . . . . . . 9
|
| 34 | 26, 33 | ecased 1360 |
. . . . . . . 8
|
| 35 | 25, 34 | readdcld 8056 |
. . . . . . 7
|
| 36 | 35 | rexrd 8076 |
. . . . . 6
|
| 37 | 6 | ad3antrrr 492 |
. . . . . 6
|
| 38 | 16, 36, 37 | ifcldadc 3590 |
. . . . 5
|
| 39 | 12 | ad2antrr 488 |
. . . . 5
|
| 40 | 15, 38, 39 | ifcldadc 3590 |
. . . 4
|
| 41 | xrmnfdc 9918 |
. . . . 5
| |
| 42 | 41 | ad2antrr 488 |
. . . 4
|
| 43 | 14, 40, 42 | ifcldadc 3590 |
. . 3
|
| 44 | xrpnfdc 9917 |
. . . 4
| |
| 45 | 44 | adantr 276 |
. . 3
|
| 46 | 8, 43, 45 | ifcldadc 3590 |
. 2
|
| 47 | simpl 109 |
. . . . 5
| |
| 48 | 47 | eqeq1d 2205 |
. . . 4
|
| 49 | simpr 110 |
. . . . . 6
| |
| 50 | 49 | eqeq1d 2205 |
. . . . 5
|
| 51 | 50 | ifbid 3582 |
. . . 4
|
| 52 | 47 | eqeq1d 2205 |
. . . . 5
|
| 53 | 49 | eqeq1d 2205 |
. . . . . 6
|
| 54 | 53 | ifbid 3582 |
. . . . 5
|
| 55 | oveq12 5931 |
. . . . . . 7
| |
| 56 | 50, 55 | ifbieq2d 3585 |
. . . . . 6
|
| 57 | 53, 56 | ifbieq2d 3585 |
. . . . 5
|
| 58 | 52, 54, 57 | ifbieq12d 3587 |
. . . 4
|
| 59 | 48, 51, 58 | ifbieq12d 3587 |
. . 3
|
| 60 | df-xadd 9848 |
. . 3
| |
| 61 | 59, 60 | ovmpoga 6052 |
. 2
|
| 62 | 46, 61 | mpd3an3 1349 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-xadd 9848 |
| This theorem is referenced by: xaddpnf1 9921 xaddpnf2 9922 xaddmnf1 9923 xaddmnf2 9924 pnfaddmnf 9925 mnfaddpnf 9926 rexadd 9927 |
| Copyright terms: Public domain | W3C validator |