| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddf | Unicode version | ||
| Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8073 |
. . . . . . 7
| |
| 2 | 1 | a1i 9 |
. . . . . 6
|
| 3 | pnfxr 8079 |
. . . . . . 7
| |
| 4 | 3 | a1i 9 |
. . . . . 6
|
| 5 | xrmnfdc 9918 |
. . . . . . 7
| |
| 6 | 5 | adantl 277 |
. . . . . 6
|
| 7 | 2, 4, 6 | ifcldcd 3597 |
. . . . 5
|
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | 1 | a1i 9 |
. . . . . 6
|
| 10 | mnfxr 8083 |
. . . . . . 7
| |
| 11 | 10 | a1i 9 |
. . . . . 6
|
| 12 | xrpnfdc 9917 |
. . . . . . 7
| |
| 13 | 12 | ad3antlr 493 |
. . . . . 6
|
| 14 | 9, 11, 13 | ifcldcd 3597 |
. . . . 5
|
| 15 | 3 | a1i 9 |
. . . . . 6
|
| 16 | 10 | a1i 9 |
. . . . . . 7
|
| 17 | simp-4r 542 |
. . . . . . . . . 10
| |
| 18 | simp-5l 543 |
. . . . . . . . . . 11
| |
| 19 | simpllr 534 |
. . . . . . . . . . . 12
| |
| 20 | 19 | neqned 2374 |
. . . . . . . . . . 11
|
| 21 | xrnemnf 9852 |
. . . . . . . . . . . 12
| |
| 22 | 21 | biimpi 120 |
. . . . . . . . . . 11
|
| 23 | 18, 20, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 24 | 17, 23 | ecased 1360 |
. . . . . . . . 9
|
| 25 | simplr 528 |
. . . . . . . . . 10
| |
| 26 | simp-5r 544 |
. . . . . . . . . . 11
| |
| 27 | neqne 2375 |
. . . . . . . . . . . 12
| |
| 28 | 27 | adantl 277 |
. . . . . . . . . . 11
|
| 29 | xrnemnf 9852 |
. . . . . . . . . . . 12
| |
| 30 | 29 | biimpi 120 |
. . . . . . . . . . 11
|
| 31 | 26, 28, 30 | syl2anc 411 |
. . . . . . . . . 10
|
| 32 | 25, 31 | ecased 1360 |
. . . . . . . . 9
|
| 33 | 24, 32 | readdcld 8056 |
. . . . . . . 8
|
| 34 | 33 | rexrd 8076 |
. . . . . . 7
|
| 35 | 6 | ad3antrrr 492 |
. . . . . . 7
|
| 36 | 16, 34, 35 | ifcldadc 3590 |
. . . . . 6
|
| 37 | 12 | ad3antlr 493 |
. . . . . 6
|
| 38 | 15, 36, 37 | ifcldadc 3590 |
. . . . 5
|
| 39 | xrmnfdc 9918 |
. . . . . 6
| |
| 40 | 39 | ad2antrr 488 |
. . . . 5
|
| 41 | 14, 38, 40 | ifcldadc 3590 |
. . . 4
|
| 42 | xrpnfdc 9917 |
. . . . 5
| |
| 43 | 42 | adantr 276 |
. . . 4
|
| 44 | 8, 41, 43 | ifcldadc 3590 |
. . 3
|
| 45 | 44 | rgen2a 2551 |
. 2
|
| 46 | df-xadd 9848 |
. . 3
| |
| 47 | 46 | fmpo 6259 |
. 2
|
| 48 | 45, 47 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-xadd 9848 |
| This theorem is referenced by: xaddcl 9935 |
| Copyright terms: Public domain | W3C validator |