| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddf | Unicode version | ||
| Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8154 |
. . . . . . 7
| |
| 2 | 1 | a1i 9 |
. . . . . 6
|
| 3 | pnfxr 8160 |
. . . . . . 7
| |
| 4 | 3 | a1i 9 |
. . . . . 6
|
| 5 | xrmnfdc 10000 |
. . . . . . 7
| |
| 6 | 5 | adantl 277 |
. . . . . 6
|
| 7 | 2, 4, 6 | ifcldcd 3617 |
. . . . 5
|
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | 1 | a1i 9 |
. . . . . 6
|
| 10 | mnfxr 8164 |
. . . . . . 7
| |
| 11 | 10 | a1i 9 |
. . . . . 6
|
| 12 | xrpnfdc 9999 |
. . . . . . 7
| |
| 13 | 12 | ad3antlr 493 |
. . . . . 6
|
| 14 | 9, 11, 13 | ifcldcd 3617 |
. . . . 5
|
| 15 | 3 | a1i 9 |
. . . . . 6
|
| 16 | 10 | a1i 9 |
. . . . . . 7
|
| 17 | simp-4r 542 |
. . . . . . . . . 10
| |
| 18 | simp-5l 543 |
. . . . . . . . . . 11
| |
| 19 | simpllr 534 |
. . . . . . . . . . . 12
| |
| 20 | 19 | neqned 2385 |
. . . . . . . . . . 11
|
| 21 | xrnemnf 9934 |
. . . . . . . . . . . 12
| |
| 22 | 21 | biimpi 120 |
. . . . . . . . . . 11
|
| 23 | 18, 20, 22 | syl2anc 411 |
. . . . . . . . . 10
|
| 24 | 17, 23 | ecased 1362 |
. . . . . . . . 9
|
| 25 | simplr 528 |
. . . . . . . . . 10
| |
| 26 | simp-5r 544 |
. . . . . . . . . . 11
| |
| 27 | neqne 2386 |
. . . . . . . . . . . 12
| |
| 28 | 27 | adantl 277 |
. . . . . . . . . . 11
|
| 29 | xrnemnf 9934 |
. . . . . . . . . . . 12
| |
| 30 | 29 | biimpi 120 |
. . . . . . . . . . 11
|
| 31 | 26, 28, 30 | syl2anc 411 |
. . . . . . . . . 10
|
| 32 | 25, 31 | ecased 1362 |
. . . . . . . . 9
|
| 33 | 24, 32 | readdcld 8137 |
. . . . . . . 8
|
| 34 | 33 | rexrd 8157 |
. . . . . . 7
|
| 35 | 6 | ad3antrrr 492 |
. . . . . . 7
|
| 36 | 16, 34, 35 | ifcldadc 3609 |
. . . . . 6
|
| 37 | 12 | ad3antlr 493 |
. . . . . 6
|
| 38 | 15, 36, 37 | ifcldadc 3609 |
. . . . 5
|
| 39 | xrmnfdc 10000 |
. . . . . 6
| |
| 40 | 39 | ad2antrr 488 |
. . . . 5
|
| 41 | 14, 38, 40 | ifcldadc 3609 |
. . . 4
|
| 42 | xrpnfdc 9999 |
. . . . 5
| |
| 43 | 42 | adantr 276 |
. . . 4
|
| 44 | 8, 41, 43 | ifcldadc 3609 |
. . 3
|
| 45 | 44 | rgen2a 2562 |
. 2
|
| 46 | df-xadd 9930 |
. . 3
| |
| 47 | 46 | fmpo 6310 |
. 2
|
| 48 | 45, 47 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-xadd 9930 |
| This theorem is referenced by: xaddcl 10017 |
| Copyright terms: Public domain | W3C validator |