ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddf Unicode version

Theorem xaddf 9831
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf  |-  +e : ( RR*  X.  RR* )
--> RR*

Proof of Theorem xaddf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7994 . . . . . . 7  |-  0  e.  RR*
21a1i 9 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  0  e.  RR* )
3 pnfxr 8000 . . . . . . 7  |- +oo  e.  RR*
43a1i 9 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> +oo  e.  RR* )
5 xrmnfdc 9830 . . . . . . 7  |-  ( y  e.  RR*  -> DECID  y  = -oo )
65adantl 277 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> DECID  y  = -oo )
72, 4, 6ifcldcd 3569 . . . . 5  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  if ( y  = -oo ,  0 , +oo )  e.  RR* )
87adantr 276 . . . 4  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  x  = +oo )  ->  if ( y  = -oo ,  0 , +oo )  e. 
RR* )
91a1i 9 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  ->  0  e.  RR* )
10 mnfxr 8004 . . . . . . 7  |- -oo  e.  RR*
1110a1i 9 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  -> -oo  e.  RR* )
12 xrpnfdc 9829 . . . . . . 7  |-  ( y  e.  RR*  -> DECID  y  = +oo )
1312ad3antlr 493 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  -> DECID  y  = +oo )
149, 11, 13ifcldcd 3569 . . . . 5  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  ->  if ( y  = +oo ,  0 , -oo )  e.  RR* )
153a1i 9 . . . . . 6  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  y  = +oo )  -> +oo  e.  RR* )
1610a1i 9 . . . . . . 7  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  y  = -oo )  -> -oo  e.  RR* )
17 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  x  = +oo )
18 simp-5l 543 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  e.  RR* )
19 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  x  = -oo )
2019neqned 2354 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  =/= -oo )
21 xrnemnf 9764 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  x  =/= -oo )  <->  ( x  e.  RR  \/  x  = +oo ) )
2221biimpi 120 . . . . . . . . . . 11  |-  ( ( x  e.  RR*  /\  x  =/= -oo )  ->  (
x  e.  RR  \/  x  = +oo )
)
2318, 20, 22syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  e.  RR  \/  x  = +oo ) )
2417, 23ecased 1349 . . . . . . . . 9  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  e.  RR )
25 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  y  = +oo )
26 simp-5r 544 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  e.  RR* )
27 neqne 2355 . . . . . . . . . . . 12  |-  ( -.  y  = -oo  ->  y  =/= -oo )
2827adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  =/= -oo )
29 xrnemnf 9764 . . . . . . . . . . . 12  |-  ( ( y  e.  RR*  /\  y  =/= -oo )  <->  ( y  e.  RR  \/  y  = +oo ) )
3029biimpi 120 . . . . . . . . . . 11  |-  ( ( y  e.  RR*  /\  y  =/= -oo )  ->  (
y  e.  RR  \/  y  = +oo )
)
3126, 28, 30syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( y  e.  RR  \/  y  = +oo ) )
3225, 31ecased 1349 . . . . . . . . 9  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  e.  RR )
3324, 32readdcld 7977 . . . . . . . 8  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  +  y )  e.  RR )
3433rexrd 7997 . . . . . . 7  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  +  y )  e.  RR* )
356ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  -> DECID  y  = -oo )
3616, 34, 35ifcldadc 3563 . . . . . 6  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  ->  if ( y  = -oo , -oo ,  ( x  +  y ) )  e.  RR* )
3712ad3antlr 493 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  -> DECID  y  = +oo )
3815, 36, 37ifcldadc 3563 . . . . 5  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  ->  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) )  e.  RR* )
39 xrmnfdc 9830 . . . . . 6  |-  ( x  e.  RR*  -> DECID  x  = -oo )
4039ad2antrr 488 . . . . 5  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  -> DECID 
x  = -oo )
4114, 38, 40ifcldadc 3563 . . . 4  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  ->  if ( x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) )  e.  RR* )
42 xrpnfdc 9829 . . . . 5  |-  ( x  e.  RR*  -> DECID  x  = +oo )
4342adantr 276 . . . 4  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> DECID  x  = +oo )
448, 41, 43ifcldadc 3563 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e.  RR* )
4544rgen2a 2531 . 2  |-  A. x  e.  RR*  A. y  e. 
RR*  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e. 
RR*
46 df-xadd 9760 . . 3  |-  +e 
=  ( x  e. 
RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
4746fmpo 6196 . 2  |-  ( A. x  e.  RR*  A. y  e.  RR*  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e.  RR*  <->  +e : ( RR*  X.  RR* )
--> RR* )
4845, 47mpbi 145 1  |-  +e : ( RR*  X.  RR* )
--> RR*
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   ifcif 3534    X. cxp 4621   -->wf 5208  (class class class)co 5869   RRcr 7801   0cc0 7802    + caddc 7805   +oocpnf 7979   -oocmnf 7980   RR*cxr 7981   +ecxad 9757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1re 7896  ax-addrcl 7899  ax-rnegex 7911
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-xadd 9760
This theorem is referenced by:  xaddcl  9847
  Copyright terms: Public domain W3C validator