Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddf | Unicode version |
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xaddf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 7925 | . . . . . . 7 | |
2 | 1 | a1i 9 | . . . . . 6 |
3 | pnfxr 7931 | . . . . . . 7 | |
4 | 3 | a1i 9 | . . . . . 6 |
5 | xrmnfdc 9748 | . . . . . . 7 DECID | |
6 | 5 | adantl 275 | . . . . . 6 DECID |
7 | 2, 4, 6 | ifcldcd 3540 | . . . . 5 |
8 | 7 | adantr 274 | . . . 4 |
9 | 1 | a1i 9 | . . . . . 6 |
10 | mnfxr 7935 | . . . . . . 7 | |
11 | 10 | a1i 9 | . . . . . 6 |
12 | xrpnfdc 9747 | . . . . . . 7 DECID | |
13 | 12 | ad3antlr 485 | . . . . . 6 DECID |
14 | 9, 11, 13 | ifcldcd 3540 | . . . . 5 |
15 | 3 | a1i 9 | . . . . . 6 |
16 | 10 | a1i 9 | . . . . . . 7 |
17 | simp-4r 532 | . . . . . . . . . 10 | |
18 | simp-5l 533 | . . . . . . . . . . 11 | |
19 | simpllr 524 | . . . . . . . . . . . 12 | |
20 | 19 | neqned 2334 | . . . . . . . . . . 11 |
21 | xrnemnf 9685 | . . . . . . . . . . . 12 | |
22 | 21 | biimpi 119 | . . . . . . . . . . 11 |
23 | 18, 20, 22 | syl2anc 409 | . . . . . . . . . 10 |
24 | 17, 23 | ecased 1331 | . . . . . . . . 9 |
25 | simplr 520 | . . . . . . . . . 10 | |
26 | simp-5r 534 | . . . . . . . . . . 11 | |
27 | neqne 2335 | . . . . . . . . . . . 12 | |
28 | 27 | adantl 275 | . . . . . . . . . . 11 |
29 | xrnemnf 9685 | . . . . . . . . . . . 12 | |
30 | 29 | biimpi 119 | . . . . . . . . . . 11 |
31 | 26, 28, 30 | syl2anc 409 | . . . . . . . . . 10 |
32 | 25, 31 | ecased 1331 | . . . . . . . . 9 |
33 | 24, 32 | readdcld 7908 | . . . . . . . 8 |
34 | 33 | rexrd 7928 | . . . . . . 7 |
35 | 6 | ad3antrrr 484 | . . . . . . 7 DECID |
36 | 16, 34, 35 | ifcldadc 3534 | . . . . . 6 |
37 | 12 | ad3antlr 485 | . . . . . 6 DECID |
38 | 15, 36, 37 | ifcldadc 3534 | . . . . 5 |
39 | xrmnfdc 9748 | . . . . . 6 DECID | |
40 | 39 | ad2antrr 480 | . . . . 5 DECID |
41 | 14, 38, 40 | ifcldadc 3534 | . . . 4 |
42 | xrpnfdc 9747 | . . . . 5 DECID | |
43 | 42 | adantr 274 | . . . 4 DECID |
44 | 8, 41, 43 | ifcldadc 3534 | . . 3 |
45 | 44 | rgen2a 2511 | . 2 |
46 | df-xadd 9681 | . . 3 | |
47 | 46 | fmpo 6150 | . 2 |
48 | 45, 47 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wo 698 DECID wdc 820 wceq 1335 wcel 2128 wne 2327 wral 2435 cif 3505 cxp 4585 wf 5167 (class class class)co 5825 cr 7732 cc0 7733 caddc 7736 cpnf 7910 cmnf 7911 cxr 7912 cxad 9678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-cnex 7824 ax-resscn 7825 ax-1re 7827 ax-addrcl 7830 ax-rnegex 7842 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-id 4254 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-fv 5179 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 df-pnf 7915 df-mnf 7916 df-xr 7917 df-xadd 9681 |
This theorem is referenced by: xaddcl 9765 |
Copyright terms: Public domain | W3C validator |