ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddf Unicode version

Theorem xaddf 9966
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf  |-  +e : ( RR*  X.  RR* )
--> RR*

Proof of Theorem xaddf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8119 . . . . . . 7  |-  0  e.  RR*
21a1i 9 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  0  e.  RR* )
3 pnfxr 8125 . . . . . . 7  |- +oo  e.  RR*
43a1i 9 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> +oo  e.  RR* )
5 xrmnfdc 9965 . . . . . . 7  |-  ( y  e.  RR*  -> DECID  y  = -oo )
65adantl 277 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> DECID  y  = -oo )
72, 4, 6ifcldcd 3608 . . . . 5  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  if ( y  = -oo ,  0 , +oo )  e.  RR* )
87adantr 276 . . . 4  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  x  = +oo )  ->  if ( y  = -oo ,  0 , +oo )  e. 
RR* )
91a1i 9 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  ->  0  e.  RR* )
10 mnfxr 8129 . . . . . . 7  |- -oo  e.  RR*
1110a1i 9 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  -> -oo  e.  RR* )
12 xrpnfdc 9964 . . . . . . 7  |-  ( y  e.  RR*  -> DECID  y  = +oo )
1312ad3antlr 493 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  -> DECID  y  = +oo )
149, 11, 13ifcldcd 3608 . . . . 5  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  ->  if ( y  = +oo ,  0 , -oo )  e.  RR* )
153a1i 9 . . . . . 6  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  y  = +oo )  -> +oo  e.  RR* )
1610a1i 9 . . . . . . 7  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  y  = -oo )  -> -oo  e.  RR* )
17 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  x  = +oo )
18 simp-5l 543 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  e.  RR* )
19 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  x  = -oo )
2019neqned 2383 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  =/= -oo )
21 xrnemnf 9899 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  x  =/= -oo )  <->  ( x  e.  RR  \/  x  = +oo ) )
2221biimpi 120 . . . . . . . . . . 11  |-  ( ( x  e.  RR*  /\  x  =/= -oo )  ->  (
x  e.  RR  \/  x  = +oo )
)
2318, 20, 22syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  e.  RR  \/  x  = +oo ) )
2417, 23ecased 1362 . . . . . . . . 9  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  e.  RR )
25 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  y  = +oo )
26 simp-5r 544 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  e.  RR* )
27 neqne 2384 . . . . . . . . . . . 12  |-  ( -.  y  = -oo  ->  y  =/= -oo )
2827adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  =/= -oo )
29 xrnemnf 9899 . . . . . . . . . . . 12  |-  ( ( y  e.  RR*  /\  y  =/= -oo )  <->  ( y  e.  RR  \/  y  = +oo ) )
3029biimpi 120 . . . . . . . . . . 11  |-  ( ( y  e.  RR*  /\  y  =/= -oo )  ->  (
y  e.  RR  \/  y  = +oo )
)
3126, 28, 30syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( y  e.  RR  \/  y  = +oo ) )
3225, 31ecased 1362 . . . . . . . . 9  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  e.  RR )
3324, 32readdcld 8102 . . . . . . . 8  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  +  y )  e.  RR )
3433rexrd 8122 . . . . . . 7  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  +  y )  e.  RR* )
356ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  -> DECID  y  = -oo )
3616, 34, 35ifcldadc 3600 . . . . . 6  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  ->  if ( y  = -oo , -oo ,  ( x  +  y ) )  e.  RR* )
3712ad3antlr 493 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  -> DECID  y  = +oo )
3815, 36, 37ifcldadc 3600 . . . . 5  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  ->  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) )  e.  RR* )
39 xrmnfdc 9965 . . . . . 6  |-  ( x  e.  RR*  -> DECID  x  = -oo )
4039ad2antrr 488 . . . . 5  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  -> DECID 
x  = -oo )
4114, 38, 40ifcldadc 3600 . . . 4  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  ->  if ( x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) )  e.  RR* )
42 xrpnfdc 9964 . . . . 5  |-  ( x  e.  RR*  -> DECID  x  = +oo )
4342adantr 276 . . . 4  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> DECID  x  = +oo )
448, 41, 43ifcldadc 3600 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e.  RR* )
4544rgen2a 2560 . 2  |-  A. x  e.  RR*  A. y  e. 
RR*  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e. 
RR*
46 df-xadd 9895 . . 3  |-  +e 
=  ( x  e. 
RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
4746fmpo 6287 . 2  |-  ( A. x  e.  RR*  A. y  e.  RR*  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e.  RR*  <->  +e : ( RR*  X.  RR* )
--> RR* )
4845, 47mpbi 145 1  |-  +e : ( RR*  X.  RR* )
--> RR*
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176    =/= wne 2376   A.wral 2484   ifcif 3571    X. cxp 4673   -->wf 5267  (class class class)co 5944   RRcr 7924   0cc0 7925    + caddc 7928   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106   +ecxad 9892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022  ax-rnegex 8034
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-xadd 9895
This theorem is referenced by:  xaddcl  9982
  Copyright terms: Public domain W3C validator