ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddf Unicode version

Theorem xaddf 9919
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf  |-  +e : ( RR*  X.  RR* )
--> RR*

Proof of Theorem xaddf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8073 . . . . . . 7  |-  0  e.  RR*
21a1i 9 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  0  e.  RR* )
3 pnfxr 8079 . . . . . . 7  |- +oo  e.  RR*
43a1i 9 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> +oo  e.  RR* )
5 xrmnfdc 9918 . . . . . . 7  |-  ( y  e.  RR*  -> DECID  y  = -oo )
65adantl 277 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> DECID  y  = -oo )
72, 4, 6ifcldcd 3597 . . . . 5  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  if ( y  = -oo ,  0 , +oo )  e.  RR* )
87adantr 276 . . . 4  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  x  = +oo )  ->  if ( y  = -oo ,  0 , +oo )  e. 
RR* )
91a1i 9 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  ->  0  e.  RR* )
10 mnfxr 8083 . . . . . . 7  |- -oo  e.  RR*
1110a1i 9 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  -> -oo  e.  RR* )
12 xrpnfdc 9917 . . . . . . 7  |-  ( y  e.  RR*  -> DECID  y  = +oo )
1312ad3antlr 493 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  -> DECID  y  = +oo )
149, 11, 13ifcldcd 3597 . . . . 5  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  ->  if ( y  = +oo ,  0 , -oo )  e.  RR* )
153a1i 9 . . . . . 6  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  y  = +oo )  -> +oo  e.  RR* )
1610a1i 9 . . . . . . 7  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  y  = -oo )  -> -oo  e.  RR* )
17 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  x  = +oo )
18 simp-5l 543 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  e.  RR* )
19 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  x  = -oo )
2019neqned 2374 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  =/= -oo )
21 xrnemnf 9852 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  x  =/= -oo )  <->  ( x  e.  RR  \/  x  = +oo ) )
2221biimpi 120 . . . . . . . . . . 11  |-  ( ( x  e.  RR*  /\  x  =/= -oo )  ->  (
x  e.  RR  \/  x  = +oo )
)
2318, 20, 22syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  e.  RR  \/  x  = +oo ) )
2417, 23ecased 1360 . . . . . . . . 9  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  e.  RR )
25 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  y  = +oo )
26 simp-5r 544 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  e.  RR* )
27 neqne 2375 . . . . . . . . . . . 12  |-  ( -.  y  = -oo  ->  y  =/= -oo )
2827adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  =/= -oo )
29 xrnemnf 9852 . . . . . . . . . . . 12  |-  ( ( y  e.  RR*  /\  y  =/= -oo )  <->  ( y  e.  RR  \/  y  = +oo ) )
3029biimpi 120 . . . . . . . . . . 11  |-  ( ( y  e.  RR*  /\  y  =/= -oo )  ->  (
y  e.  RR  \/  y  = +oo )
)
3126, 28, 30syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( y  e.  RR  \/  y  = +oo ) )
3225, 31ecased 1360 . . . . . . . . 9  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  e.  RR )
3324, 32readdcld 8056 . . . . . . . 8  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  +  y )  e.  RR )
3433rexrd 8076 . . . . . . 7  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  +  y )  e.  RR* )
356ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  -> DECID  y  = -oo )
3616, 34, 35ifcldadc 3590 . . . . . 6  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  ->  if ( y  = -oo , -oo ,  ( x  +  y ) )  e.  RR* )
3712ad3antlr 493 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  -> DECID  y  = +oo )
3815, 36, 37ifcldadc 3590 . . . . 5  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  ->  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) )  e.  RR* )
39 xrmnfdc 9918 . . . . . 6  |-  ( x  e.  RR*  -> DECID  x  = -oo )
4039ad2antrr 488 . . . . 5  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  -> DECID 
x  = -oo )
4114, 38, 40ifcldadc 3590 . . . 4  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  ->  if ( x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) )  e.  RR* )
42 xrpnfdc 9917 . . . . 5  |-  ( x  e.  RR*  -> DECID  x  = +oo )
4342adantr 276 . . . 4  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> DECID  x  = +oo )
448, 41, 43ifcldadc 3590 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e.  RR* )
4544rgen2a 2551 . 2  |-  A. x  e.  RR*  A. y  e. 
RR*  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e. 
RR*
46 df-xadd 9848 . . 3  |-  +e 
=  ( x  e. 
RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
4746fmpo 6259 . 2  |-  ( A. x  e.  RR*  A. y  e.  RR*  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e.  RR*  <->  +e : ( RR*  X.  RR* )
--> RR* )
4845, 47mpbi 145 1  |-  +e : ( RR*  X.  RR* )
--> RR*
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   ifcif 3561    X. cxp 4661   -->wf 5254  (class class class)co 5922   RRcr 7878   0cc0 7879    + caddc 7882   +oocpnf 8058   -oocmnf 8059   RR*cxr 8060   +ecxad 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-rnegex 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-xadd 9848
This theorem is referenced by:  xaddcl  9935
  Copyright terms: Public domain W3C validator