ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddf Unicode version

Theorem xaddf 9858
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf  |-  +e : ( RR*  X.  RR* )
--> RR*

Proof of Theorem xaddf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8018 . . . . . . 7  |-  0  e.  RR*
21a1i 9 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  0  e.  RR* )
3 pnfxr 8024 . . . . . . 7  |- +oo  e.  RR*
43a1i 9 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> +oo  e.  RR* )
5 xrmnfdc 9857 . . . . . . 7  |-  ( y  e.  RR*  -> DECID  y  = -oo )
65adantl 277 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> DECID  y  = -oo )
72, 4, 6ifcldcd 3582 . . . . 5  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  if ( y  = -oo ,  0 , +oo )  e.  RR* )
87adantr 276 . . . 4  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  x  = +oo )  ->  if ( y  = -oo ,  0 , +oo )  e. 
RR* )
91a1i 9 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  ->  0  e.  RR* )
10 mnfxr 8028 . . . . . . 7  |- -oo  e.  RR*
1110a1i 9 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  -> -oo  e.  RR* )
12 xrpnfdc 9856 . . . . . . 7  |-  ( y  e.  RR*  -> DECID  y  = +oo )
1312ad3antlr 493 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  -> DECID  y  = +oo )
149, 11, 13ifcldcd 3582 . . . . 5  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  x  = -oo )  ->  if ( y  = +oo ,  0 , -oo )  e.  RR* )
153a1i 9 . . . . . 6  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  y  = +oo )  -> +oo  e.  RR* )
1610a1i 9 . . . . . . 7  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  y  = -oo )  -> -oo  e.  RR* )
17 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  x  = +oo )
18 simp-5l 543 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  e.  RR* )
19 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  x  = -oo )
2019neqned 2364 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  =/= -oo )
21 xrnemnf 9791 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  x  =/= -oo )  <->  ( x  e.  RR  \/  x  = +oo ) )
2221biimpi 120 . . . . . . . . . . 11  |-  ( ( x  e.  RR*  /\  x  =/= -oo )  ->  (
x  e.  RR  \/  x  = +oo )
)
2318, 20, 22syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  e.  RR  \/  x  = +oo ) )
2417, 23ecased 1359 . . . . . . . . 9  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  x  e.  RR )
25 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  -.  y  = +oo )
26 simp-5r 544 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  e.  RR* )
27 neqne 2365 . . . . . . . . . . . 12  |-  ( -.  y  = -oo  ->  y  =/= -oo )
2827adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  =/= -oo )
29 xrnemnf 9791 . . . . . . . . . . . 12  |-  ( ( y  e.  RR*  /\  y  =/= -oo )  <->  ( y  e.  RR  \/  y  = +oo ) )
3029biimpi 120 . . . . . . . . . . 11  |-  ( ( y  e.  RR*  /\  y  =/= -oo )  ->  (
y  e.  RR  \/  y  = +oo )
)
3126, 28, 30syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( y  e.  RR  \/  y  = +oo ) )
3225, 31ecased 1359 . . . . . . . . 9  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  y  e.  RR )
3324, 32readdcld 8001 . . . . . . . 8  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  +  y )  e.  RR )
3433rexrd 8021 . . . . . . 7  |-  ( ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  /\  -.  y  = -oo )  ->  ( x  +  y )  e.  RR* )
356ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  -> DECID  y  = -oo )
3616, 34, 35ifcldadc 3575 . . . . . 6  |-  ( ( ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  /\  -.  y  = +oo )  ->  if ( y  = -oo , -oo ,  ( x  +  y ) )  e.  RR* )
3712ad3antlr 493 . . . . . 6  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  -> DECID  y  = +oo )
3815, 36, 37ifcldadc 3575 . . . . 5  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  /\  -.  x  = -oo )  ->  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) )  e.  RR* )
39 xrmnfdc 9857 . . . . . 6  |-  ( x  e.  RR*  -> DECID  x  = -oo )
4039ad2antrr 488 . . . . 5  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  -> DECID 
x  = -oo )
4114, 38, 40ifcldadc 3575 . . . 4  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  -.  x  = +oo )  ->  if ( x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) )  e.  RR* )
42 xrpnfdc 9856 . . . . 5  |-  ( x  e.  RR*  -> DECID  x  = +oo )
4342adantr 276 . . . 4  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  -> DECID  x  = +oo )
448, 41, 43ifcldadc 3575 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e.  RR* )
4544rgen2a 2541 . 2  |-  A. x  e.  RR*  A. y  e. 
RR*  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e. 
RR*
46 df-xadd 9787 . . 3  |-  +e 
=  ( x  e. 
RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo , 
0 , +oo ) ,  if ( x  = -oo ,  if ( y  = +oo , 
0 , -oo ) ,  if ( y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
4746fmpo 6216 . 2  |-  ( A. x  e.  RR*  A. y  e.  RR*  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) )  e.  RR*  <->  +e : ( RR*  X.  RR* )
--> RR* )
4845, 47mpbi 145 1  |-  +e : ( RR*  X.  RR* )
--> RR*
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1363    e. wcel 2158    =/= wne 2357   A.wral 2465   ifcif 3546    X. cxp 4636   -->wf 5224  (class class class)co 5888   RRcr 7824   0cc0 7825    + caddc 7828   +oocpnf 8003   -oocmnf 8004   RR*cxr 8005   +ecxad 9784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1re 7919  ax-addrcl 7922  ax-rnegex 7934
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-pnf 8008  df-mnf 8009  df-xr 8010  df-xadd 9787
This theorem is referenced by:  xaddcl  9874
  Copyright terms: Public domain W3C validator