ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-xneg Unicode version

Definition df-xneg 9804
Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
df-xneg  |-  -e
A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )

Detailed syntax breakdown of Definition df-xneg
StepHypRef Expression
1 cA . . 3  class  A
21cxne 9801 . 2  class  -e
A
3 cpnf 8020 . . . 4  class +oo
41, 3wceq 1364 . . 3  wff  A  = +oo
5 cmnf 8021 . . 3  class -oo
61, 5wceq 1364 . . . 4  wff  A  = -oo
71cneg 8160 . . . 4  class  -u A
86, 3, 7cif 3549 . . 3  class  if ( A  = -oo , +oo ,  -u A )
94, 5, 8cif 3549 . 2  class  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )
102, 9wceq 1364 1  wff  -e
A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )
Colors of variables: wff set class
This definition is referenced by:  xnegeq  9859  xnegpnf  9860  xnegmnf  9861  rexneg  9862
  Copyright terms: Public domain W3C validator