ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfor2dc Unicode version

Theorem dfor2dc 895
Description: Disjunction expressed in terms of implication only, for a decidable proposition. Based on theorem *5.25 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 27-Mar-2018.)
Assertion
Ref Expression
dfor2dc  |-  (DECID  ph  ->  ( ( ph  \/  ps ) 
<->  ( ( ph  ->  ps )  ->  ps )
) )

Proof of Theorem dfor2dc
StepHypRef Expression
1 pm2.62 748 . 2  |-  ( (
ph  \/  ps )  ->  ( ( ph  ->  ps )  ->  ps )
)
2 pm2.68dc 894 . 2  |-  (DECID  ph  ->  ( ( ( ph  ->  ps )  ->  ps )  ->  ( ph  \/  ps ) ) )
31, 2impbid2 143 1  |-  (DECID  ph  ->  ( ( ph  \/  ps ) 
<->  ( ( ph  ->  ps )  ->  ps )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 708  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by:  imimorbdc  896
  Copyright terms: Public domain W3C validator